research

An information-theoretic security proof for QKD protocols

Abstract

We present a new technique for proving the security of quantum key distribution (QKD) protocols. It is based on direct information-theoretic arguments and thus also applies if no equivalent entanglement purification scheme can be found. Using this technique, we investigate a general class of QKD protocols with one-way classical post-processing. We show that, in order to analyze the full security of these protocols, it suffices to consider collective attacks. Indeed, we give new lower and upper bounds on the secret-key rate which only involve entropies of two-qubit density operators and which are thus easy to compute. As an illustration of our results, we analyze the BB84, the six-state, and the B92 protocol with one-way error correction and privacy amplification. Surprisingly, the performance of these protocols is increased if one of the parties adds noise to the measurement data before the error correction. In particular, this additional noise makes the protocols more robust against noise in the quantum channel.Comment: 18 pages, 3 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 05/06/2019