16 research outputs found

    Deciphering microbiomes dozens of meters under our feet and their edaphoclimatic and spatial drivers

    Get PDF
    24 páginas.- 7 figuras.- referenciasMicrobes inhabiting deep soil layers are known to be different from their counterpart in topsoil yet remain under investigation in terms of their structure, function, and how their diversity is shaped. The microbiome of deep soils (>1 m) is expected to be relatively stable and highly independent from climatic conditions. Much less is known, however, on how these microbial communities vary along climate gradients. Here, we used amplicon sequencing to investigate bacteria, archaea, and fungi along fifteen 18-m depth profiles at 20-50-cm intervals across contrasting aridity conditions in semi-arid forest ecosystems of China's Loess Plateau. Our results showed that bacterial and fungal α diversity and bacterial and archaeal community similarity declined dramatically in topsoil and remained relatively stable in deep soil. Nevertheless, deep soil microbiome still showed the functional potential of N cycling, plant-derived organic matter degradation, resource exchange, and water coordination. The deep soil microbiome had closer taxa-taxa and bacteria-fungi associations and more influence of dispersal limitation than topsoil microbiome. Geographic distance was more influential in deep soil bacteria and archaea than in topsoil. We further showed that aridity was negatively correlated with deep-soil archaeal and fungal richness, archaeal community similarity, relative abundance of plant saprotroph, and bacteria-fungi associations, but increased the relative abundance of aerobic ammonia oxidation, manganese oxidation, and arbuscular mycorrhizal in the deep soils. Root depth, complexity, soil volumetric moisture, and clay play bridging roles in the indirect effects of aridity on microbes in deep soils. Our work indicates that, even microbial communities and nutrient cycling in deep soil are susceptible to changes in water availability, with consequences for understanding the sustainability of dryland ecosystems and the whole-soil in response to aridification. Moreover, we propose that neglecting soil depth may underestimate the role of soil moisture in dryland ecosystems under future climate scenarios.This project was supported by the Joint Key Funds of the National Natural Science Foundation of China (U21A20237), the Strategic Priority Research Program of Chinese Academy of Sciences (XDB40020202). M.D.-B. acknowledges support from TED2021-130908B-C41/AEI/10.13039/501100011033/Unión Europea NextGenerationEU/PRTR and from the Spanish Ministry of Science and Innovation for the I + D + i project PID2020-115813RA-I00 funded by MCIN/AEI/10.13039/501100011033. R.O.H. was funded by the Ramón y Cajal program of the MICINN (RYC-2017 22032), by the R&D Project of the Ministry of Science and Innovation PID2019-106004RA-I00 funded by MCIN/AEI/10.13039/501100011033, and by the European Agricultural Fund for Rural Development (EAFRD) through the “Aid to operational groups of the European Association of Innovation (AEI) in terms of agricultural productivity and sustainability,” Reference: GOPC-CA-20-0001Peer reviewe

    ESR Chronology of Bedrock Fault Activity in Carbonate Area: Preliminary Results from the Study of the Lijiang-Xiaojinhe Fault, Southeastern Tibet, China

    No full text
    Abstract Carbonated rocks constitute one of the main lithologies of the southeastern Tibet area, China, a tectonically very active zone. However, due to the lack of suitable dating materials, it is difficult to carry out chronological studies of the local tectonic evolution in such carbonate areas. In the present study, electron spin resonance (ESR) method had been applied on the dating of carbonates heated during fault activity of the Lijiang-Xiaojinhe (LX) Fault, an important active fault located in the northwest of Yunnan Province. Clear displaced landforms show that the fault has undergone strong late-Quaternary activity. During the fault activity, the heat produced by friction lead to the melting of the frictional surface of the rocks, and the melting can attenuate or zero the ESR dating signal of carbonate. The aim of the present paper was to check the ability of carbonate use to chronologically identify fault activity using electron spin resonance (ESR) method. The results showed the last fault activity of the LX fault was dated by ESR about 2.0±0.2 ka ago, in agreement with historical and radiocarbon data. Hence ESR can be if necessary a practicable dating alternative method for the study of fault activity chronology in carbonate rock area

    Effects of Decabrominated Diphenyl Ether Exposure on Growth, Meat Characteristics and Blood Profiles in Broilers

    No full text
    Decabrominated diphenyl ether (BDE-209) is widely used as a flame retardant and is detected at high levels in the environment. Its toxicities have been reported and have attracted attention. In the present study, broilers were used to determine the response in growth performance, carcass traits, meat quality, blood profiles and antioxidant system to BDE-209 exposure at doses of 0, 0.02, 0.4 and 4 mg/kg. The results showed that BDE-209 exposure at levels of 0.02 or 0.4 mg/kg increased feed intake and decreased feed efficiency. BDE-209 altered the blood profiles, such as reducing the numbers of white blood cells, lymphocytes and neutrophilic granulocytes. As compared with the control, BDE-209 exposure significantly increased abdominal fat percentages of broilers at 64.9–159.5% and adversely affected the selected biochemical indicators, including alkaline phosphatase (ALP), aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatine (CRE), which indicated its toxicity to liver and kidney functions. Moreover, BDE-209 exposure significantly increased plasma malondialdehyde (MDA) concentrations and decreased the activities of glutathione peroxidase (GSH-px) and superoxide dismutase (SOD), which implied aggravating oxidant stress and decline of antioxidant capacity in broilers. In conclusion, our data demonstrated that the environmental pollutant BDE-209 adversely influenced growth performance, increased the deposition of abdominal fat, impaired antioxidant capacity and the immune system and had potential toxicity to the liver and kidney of broilers

    Olefin Preparation via Palladium-Catalyzed Oxidative De-Azotative and De-Sulfitative Internal Cross-Coupling of Sulfonylhydrazones

    No full text
    A novel reactivity of sulfonylhydrazones under Pd catalysis is described, where SO<sub>2</sub> and N<sub>2</sub> are formally extruded to afford the product of an apparent internal coupling reaction. The reaction is effective with both carbocyclic and heterocyclic aromatic precursors

    Quality Evaluation of Wild and Cultivated <i>Schisandrae Chinensis</i> Fructus Based on Simultaneous Determination of Multiple Bioactive Constituents Combined with Multivariate Statistical Analysis

    No full text
    Schisandrae Chinensis Fructus, also called wuweizi in China, was a widely used folk medicine in China, Korea, and Russia. Due to the limited natural resources and huge demand of wuweizi, people tend to cultivate wuweizi to protect this species. However, the quality of wild and cultivated herbs of the same species may change. Little attention has been paid to comparing wild and cultivated wuweizi based on simultaneous determination of its active components, such as lignans and organic acids. An analytical method based on UFLC-QTRAP-MS/MS was used for the simultaneous determination of 15 components, including 11 lignans (schisandrin, gomisin D, gomisin J, schisandrol B, angeloylgomisin H, schizantherin B, schisanhenol, deoxyschizandrin, &#947;-schisandrin, schizandrin C, and schisantherin) and 4 organic acids (quinic acid, d(&#8722;)-tartaric acid, l-(&#8722;)-malic acid, and protocatechuic acid) in wuweizi under different ecological environments. Principal components analysis (PCA), partial least squares discrimination analysis (PLS-DA), independent sample t-test, and gray relational analysis (GRA) have been applied to classify and evaluate samples from different ecological environments according to the content of 15 components. The results showed that the differential compounds (i.e., quinic acid, l-(&#8722;)-malic acid, protocatechuic acid, schisandrol B) were significantly related to the classification of wild and cultivated wuweizi. GRA results demonstrated that the quality of cultivated wuweizi was not as good as wild wuweizi. The protocol not just provided a new method for the comprehensive evaluation and quality control of wild and cultivated wuweizi, but paved the way to differentiate them at the chemistry level

    Palladium-Catalyzed Coupling of Sulfonylhydrazones with Heteroaromatic 2‑Amino-Halides (Barluenga Reaction): Exploring the Electronics of the Sulfonylhydrazone

    No full text
    This paper describes a new reactivity of the Pd-catalyzed coupling of 2-amino-3-bromo-aromatic and heteroaromatic compounds with sulfonylhydrazones (Barluenga reaction).The new catalyst system and modulation of the electronic nature of hydrazone that were needed for successful reaction are described herein

    Stereoselective C-Glycosylation Reactions with Arylzinc Reagents

    No full text
    A general, transition-metal-free, highly stereoselective cross-coupling reaction between glycosyl bromides and various arylzinc reagents leading to β-arylated glycosides is reported. The stereoselectivity of the reaction is explained by invoking anchimeric assistance via a bicyclic intermediate. Stereochemical probes confirm the participation of the 2-pivaloyloxy group. Finally, this new method was applied to a short and efficient stereoselective synthesis of Dapagliflozin and Canagliflozin
    corecore