1,612 research outputs found

    Characterisation of radiation damage in silicon photomultipliers with a Monte Carlo model

    Full text link
    Measured response functions and low photon yield spectra of silicon photomultipliers (SiPM) were compared to multi-photoelectron pulse-height distributions generated by a Monte Carlo model. Characteristic parameters for SiPM were derived. The devices were irradiated with 14 MeV electrons at the Mainz microtron MAMI. It is shown that the first noticeable damage consists of an increase in the rate of dark pulses and the loss of uniformity in the pixel gains. Higher radiation doses reduced also the photon detection efficiency. The results are especially relevant for applications of SiPM in fibre detectors at high luminosity experiments.Comment: submitted to Nucl. Instr. and Meth.

    On the basic mechanism of Pixelized Photon Detectors

    Full text link
    A Pixelized Photon Detector (PPD) is a generic name for the semiconductor devices operated in the Geiger-mode, such as Silicon PhotoMultiplier and Multi-Pixel Photon Counter, which has high photon counting capability. While the internal mechanisms of the PPD have been intensively studied in recent years, the existing models do not include the avalanche process. We have simulated the multiplication and quenching of the avalanche process and have succeeded in reproducing the output waveform of the PPD. Furthermore our model predicts the existence of dead-time in the PPD which has never been numerically predicted. For serching the dead-time, we also have developed waveform analysis method using deconvolution which has the potential to distinguish neibouring pulses precisely. In this paper, we discuss our improved model and waveform analysis method.Comment: 4pages, 5figures, To appear in the proceedings of 5th International Conference on New Developments in Photodetection (NDIP08), Aix-les-Bains, France, 15-20 Jun 200

    Softening of Cu-O bond stretching phonon in tetragonal HgBa2_2CuO4+δ_{4+\delta}

    Full text link
    Phonons in nearly optimally doped HgBa2_2CuO4+δ_{4+\delta} were studied by inelastic X-ray scattering. The dispersion of the low energy modes is well described by a shell model, while the Cu-O bond stretching mode at high energy shows strong softening towards the zone boundary, which deviates strongly from the model. This seems to be common in the hole-doped high-TcT_\mathrm{c} superconducting cuprates, and, based on this work, not related to a lattice distortion specific to each material.Comment: 5 pages, 4 figures, accepted for publication in Phys. Rev. Let

    Light response of pure CsI calorimeter crystals painted with wavelength-shifting lacquer

    Get PDF
    We have measured scintillation properties of pure CsI crystals used in the shower calorimeter built for a precise determination of the pi+ -> pi0 e+ nu decay rate at the Paul Scherrer Institute (PSI). All 240 individual crystals painted with a special wavelength-shifting solution were examined in a custom-build detection apparatus (RASTA=radioactive source tomography apparatus) that uses a 137Cs radioactive gamma source, cosmic muons and a light emitting diode as complementary probes of the scintillator light response. We have extracted the total light output, axial light collection nonuniformities and timing responses of the individual CsI crystals. These results predict improved performance of the 3 pi sr PIBETA calorimeter due to the painted lateral surfaces of 240 CsI crystals. The wavelength-shifting paint treatment did not affect appreciably the total light output and timing resolution of our crystal sample. The predicted energy resolution for positrons and photons in the energy range of 10-100 MeV was nevertheless improved due to the more favorable axial light collection probability variation. We have compared simulated calorimeter ADC spectra due to 70 MeV positrons and photons with a Monte Carlo calculation of an ideal detector light response.Comment: Elsevier LaTeX, 35 pages in e-print format, 15 Postscript Figures and 4 Tables, also available at http://pibeta.phys.virginia.edu/~pibeta/subprojects/csipro/tomo/rasta.p

    A High-resolution Scintillating Fiber Tracker With Silicon Photomultiplier Array Readout

    Full text link
    We present prototype modules for a tracking detector consisting of multiple layers of 0.25 mm diameter scintillating fibers that are read out by linear arrays of silicon photomultipliers. The module production process is described and measurements of the key properties for both the fibers and the readout devices are shown. Five modules have been subjected to a 12 GeV/c proton/pion testbeam at CERN. A spatial resolution of 0.05 mm and light yields exceeding 20 detected photons per minimum ionizing particle have been achieved, at a tracking efficiency of more than 98.5%. Possible techniques for further improvement of the spatial resolution are discussed.Comment: 31 pages, 27 figures, pre-print version of an article published in Nuclear Instruments and Methods in Physics Research Section A, Vol. 62

    A novel camera type for very high energy gamma-ray astronomy based on Geiger-mode avalanche photodiodes

    Full text link
    Geiger-mode avalanche photodiodes (G-APD) are promising new sensors for light detection in atmospheric Cherenkov telescopes. In this paper, the design and commissioning of a 36-pixel G-APD prototype camera is presented. The data acquisition is based on the Domino Ring Sampling (DRS2) chip. A sub-nanosecond time resolution has been achieved. Cosmic-ray induced air showers have been recorded using an imaging mirror setup, in a self-triggered mode. This is the first time that such measurements have been carried out with a complete G-APD camera.Comment: 9 pages with 11 figure

    High frequency longitudinal and transverse dynamics in water

    Full text link
    High-resolution, inelastic x-ray scattering measurements of the dynamic structure factor S(Q,\omega) of liquid water have been performed for wave vectors Q between 4 and 30 nm^-1 in distinctly different thermodynamic conditions (T= 263 - 420 K ; at, or close to, ambient pressure and at P = 2 kbar). In agreement with previous inelastic x-ray and neutron studies, the presence of two inelastic contributions (one dispersing with Q and the other almost non-dispersive) is confirmed. The study of their temperature- and Q-dependence provides strong support for a dynamics of liquid water controlled by the structural relaxation process. A viscoelastic analysis of the Q-dispersing mode, associated with the longitudinal dynamics, reveals that the sound velocity undergoes the complete transition from the adiabatic sound velocity (c_0) (viscous limit) to the infinite frequency sound velocity (c_\infinity) (elastic limit). On decreasing Q, as the transition regime is approached from the elastic side, we observe a decrease of the intensity of the second, weakly dispersing feature, which completely disappears when the viscous regime is reached. These findings unambiguously identify the second excitation to be a signature of the transverse dynamics with a longitudinal symmetry component, which becomes visible in the S(Q,\omega) as soon as the purely viscous regime is left.Comment: 28 pages, 12 figure

    Studies on multiplication effect of noises of PPDs, and a proposal of a new structure to improve the performance

    Full text link
    Pixelated Photon Detectors (PPDs) are the most promising semiconductor photodetectors in recent years. One of the issues with the PPD is its high noise rate. As well as random noise, PPD also exhibits so called after-pulsing and optical crosstalk, and these limit the applicable range of its gain as well as its size. By accurately measuring each of these causes of noises independently, we quantitatively evaluated how the performance of the present device is limited by multiplication effect of these noises. With this result and the pulsing mechanism of PPD, we propose a new structure of PPD which could have high gain with low noise.Comment: Submitted to Nuclear Instruments and Methods in Physics Research,
    • …
    corecore