14 research outputs found

    Cosmological constraints on decaying axion-like particles: a global analysis

    Get PDF
    Axion-like particles (ALPs) decaying into photons are known to affect a wide range of astrophysical and cosmological observables. In this study we focus on ALPs with masses in the keV–MeV range and lifetimes between 104^4 and 1013^{13} seconds, corresponding to decays between the end of Big Bang Nucleosynthesis and the formation of the Cosmic Microwave Background (CMB). Using the CosmoBit module of the global fitting framework GAMBIT, we combine state-of-the-art calculations of the irreducible ALP freeze-in abundance, primordial element abundances (including photodisintegration through ALP decays), CMB spectral distortions and anisotropies, and constraints from supernovae and stellar cooling. This approach makes it possible for the first time to perform a global analysis of the ALP parameter space while varying the parameters of ΛCDM as well as several nuisance parameters. We find a lower bound on the ALP mass of around ma_a > 300 keV, which can only be evaded if ALPs are stable on cosmological timescales. Future observations of CMB spectral distortions with a PIXIE-like mission are expected to improve this bound by two orders of magnitude

    Cosmological constraints on decaying axion-like particles: a global analysis

    Get PDF
    Axion-like particles (ALPs) decaying into photons are known to affect a wide range of astrophysical and cosmological observables. In this study we focus on ALPs with masses in the keV-MeV range and lifetimes between 104^4 and 1013^{13} seconds, corresponding to decays between the end of Big Bang Nucleosynthesis and the formation of the Cosmic Microwave Background (CMB). Using the CosmoBit module of the global fitting framework GAMBIT, we combine state-of-the-art calculations of the irreducible ALP freeze-in abundance, primordial element abundances (including photodisintegration through ALP decays), CMB spectral distortions and anisotropies, and constraints from supernovae and stellar cooling. This approach makes it possible for the first time to perform a global analysis of the ALP parameter space while varying the parameters of ΛCDM as well as several nuisance parameters. We find a lower bound on the ALP mass of around ma_a>300keV, which can only be evaded if ALPs are stable on cosmological timescales. Future observations of CMB spectral distortions with a PIXIE-like mission are expected to improve this bound by two orders of magnitude

    Delving in the Dark : Searching for Signatures of Non-Standard Physics in Cosmological and Astrophysical Observables

    No full text
    The dark sectors of our Universe, dark matter and dark energy, together constitute about 96 % of the total energy content of the Universe. To date, we only have observational evidence for their existence. What is still lacking is a complete theoretical framework consistent with all observational data to embed a dark matter particle or component into the standard models of particle physics and cosmology, as well as an explanation for the nature or origin of dark energy. Since the discovery of these dark components decades ago, a variety of different theories have been proposed to overcome the shortcomings of our current standard models. To assess the viability of these non-standard theories, they ideally should be tested against all relevant available datasets. In this thesis, I show two examples of how cosmological and astrophysical observables are used to constrain or even rule out non-standard cosmological models. Further, I present the first software tool that provides a general framework to test non-standard physics with global fits to data from particle physics and cosmology simultaneously. The first example is minimally coupled covariant Galileons, a modification of General Relativity to explain dark energy without the need for a fine-tuned cosmological constant. I demonstrate how the combination of constraints arising from the integrated Sachs-Wolf effect and the propagation speed of gravitational waves can rule out all three branches of the theory. The second example shows how the existence and parameter space of cosmic superstrings can be constrained. These are the hypothesised fundamental building blocks of Type IIb Superstring theory, stretched out to cosmological scales during the phase of inflation. The theory can be tested through the unique microlensing signature of cosmic superstrings when crossing the line of sight of an observer monitoring a point-like source. I show how, based on simulations, we can estimate the expected detection rates from observations of distant Type Ia Supernovae and stars in Andromeda; from these estimates I assess the implications for the theory. Finally, I present CosmoBit, a new module for the Global and Modular Beyond-Standard Model Inference Tool (GAMBIT). \gambit allows the user to test a variety of extensions to the Standard Model of particle physics against data from, e.g. collider searches, dark matter direct and indirect detection experiments, as well as laboratory measurements of neutrino properties. CosmoBit augments this with the inclusion of cosmological likelihoods. This addition opens up the possibility to test a given model against data from, e.g. the Big Bang Nucleosynthesis proceeding minutes after the Big Bang, probes of the Cosmic Microwave Background ~ 380,000 years later, and (laboratory) measurements from the present day, 13.8 billion years after the Big Bang. Including measurements that span several different epochs and orders of magnitude in energy, the combination of CosmoBit with other GAMBIT modules provides a promising tool for shedding light on the dark sectors of the Universe

    The GAMBIT Universal Model Machine : from Lagrangians to likelihoods

    No full text
    We introduce the GAMBIT Universal Model Machine (GUM), a tool for automatically generating code for the global fitting software framework GAMBIT, based on Lagrangian-level inputs. GUM accepts models written symbolically in FeynRules and SARAH formats, and can use either tool along with MadG rap h and CaIcHEP to generate GAMBIT model, collider, dark matter, decay and spectrum code, as well as GAMBIT interfaces to corresponding versions of SPheno, micrOMEGAs, Pythia and Vevacious (C++). In this paper we describe the features, methods, usage, pathways, assumptions and current limitations of GUM. We also give a fully worked example, consisting of the addition of a Majorana fermion simplified dark matter model with a scalar mediator to GAMBIT via GUM, and carry out a corresponding fit

    Cosmological constraints on decaying axion-like particles: a global analysis

    Full text link
    Axion-like particles (ALPs) decaying into photons are known to affect a wide range of astrophysical and cosmological observables. In this study we focus on ALPs with masses in the keV-MeV range and lifetimes between 10410^4 and 101310^{13} seconds, corresponding to decays between the end of Big Bang Nucleosynthesis and the formation of the Cosmic Microwave Background (CMB). Using the CosmoBit module of the global fitting framework GAMBIT, we combine state-of-the-art calculations of the irreducible ALP freeze-in abundance, primordial element abundances (including photodisintegration through ALP decays), CMB spectral distortions and anisotropies, and constraints from supernovae and stellar cooling. This approach makes it possible for the first time to perform a global analysis of the ALP parameter space while varying the parameters of Λ\LambdaCDM as well as several nuisance parameters. We find a lower bound on the ALP mass of around ma>300 keVm_a > 300\,\text{keV}, which can only be evaded if ALPs are stable on cosmological timescales. Future observations of CMB spectral distortions with a PIXIE-like mission are expected to improve this bound by two orders of magnitude.Comment: 29+15 pages, 9 figures, auxiliary material available on Zenodo at https://zenodo.org/record/657334

    Strengthening the bound on the mass of the lightest neutrino with terrestrial and cosmological experiments

    No full text
    We determine the upper limit on the mass of the lightest neutrino from the most robust recent cosmological and terrestrial data. Marginalizing over possible effective relativistic degrees of freedom at early times ((N)(eff)) and assuming normal mass ordering, the mass of the lightest neutrino is less than 0.037 eV at 95% confidence; with inverted ordering, the bound is 0.042 eV. These results improve upon the strength and robustness of other recent limits and constrain the mass of the lightest neutrino to be barely larger than the largest mass splitting. We show the impacts of realistic mass models and different sources of (N)(eff).Patrick Stöcker, Csaba Balázs, Sanjay Bloor, Torsten Bringmann, Tomás E. Gonzalo, Will Handley, Selim Hotinli, Cullan Howlett, Felix Kahlhoefer, Janina J. Renk, Pat Scott, Aaron C. Vincent, and Martin White (The GAMBIT Cosmology Workgroup)

    CosmoBit: a GAMBIT module for computing cosmological observables and likelihoods

    No full text
    We introduce CosmoBit, a module within the open-source GAMBIT software framework for exploring connections between cosmology and particle physics with joint global fits. CosmoBit provides a flexible framework for studying various scenarios beyond ΛCDM, such as models of inflation, modifications of the effective number of relativistic degrees of freedom, exotic energy injection from annihilating or decaying dark matter, and variations of the properties of elementary particles such as neutrino masses and the lifetime of the neutron. Many observables and likelihoods in CosmoBit are computed via interfaces to AlterBBN, CLASS, DarkAges, MontePython, MultiModeCode, and plc. This makes it possible to apply a wide range of constraints from large-scale structure, Type Ia supernovae, Big Bang Nucleosynthesis and the cosmic microwave background. Parameter scans can be performed using the many different statistical sampling algorithms available within the GAMBIT framework, and results can be combined with calculations from other GAMBIT modules focused on particle physics and dark matter. We include extensive validation plots and a first application to scenarios with non-standard relativistic degrees of freedom and neutrino temperature, showing that the corresponding constraint on the sum of neutrino masses is much weaker than in the standard scenario.Janina J. Renk, Patrick Stöcker, Sanjay Bloor, Selim Hotinli, Csaba Balázs, Torsten Bringmann ... et al

    Thermal WIMPs and the scale of new physics: global fits of Dirac dark matter effective field theories

    Get PDF
    International audienceWe assess the status of a wide class of WIMP dark matter (DM) models in light of the latest experimental results using the global fitting framework GAMBIT. We perform a global analysis of effective field theory (EFT) operators describing the interactions between a gauge-singlet Dirac fermion and the Standard Model quarks, the gluons and the photon. In this bottom-up approach, we simultaneously vary the coefficients of 14 such operators up to dimension 7, along with the DM mass, the scale of new physics and several nuisance parameters. Our likelihood functions include the latest data from Planck, direct and indirect detection experiments, and the LHC. For DM masses below 100 GeV, we find that it is impossible to satisfy all constraints simultaneously while maintaining EFT validity at LHC energies. For new physics scales around 1 TeV, our results are influenced by several small excesses in the LHC data and depend on the prescription that we adopt to ensure EFT validity. Furthermore, we find large regions of viable parameter space where the EFT is valid and the relic density can be reproduced, implying that WIMPs can still account for the DM of the universe while being consistent with the latest data
    corecore