35 research outputs found
Diagnostic issues and capabilities in 48 isolation facilities in 16 European countries: data from EuroNHID surveys
Background: Highly infectious diseases (HIDs) are defined as being transmissible from person to person, causing life-threatening illnesses and presenting a serious public health hazard. The sampling, handling and transport of specimens from patients with HIDs present specific bio-safety concerns. Findings The European Network for HID project aimed to record, in a cross-sectional study, the infection control capabilities of referral centers for HIDs across Europe and assesses the level of achievement to previously published guidelines. In this paper, we report the current diagnostic capabilities and bio-safety measures applied to diagnostic procedures in these referral centers. Overall, 48 isolation facilities in 16 European countries were evaluated. Although 81% of these referral centers are located near a biosafety level 3 laboratory, 11% and 31% of them still performed their microbiological and routine diagnostic analyses, respectively, without bio-safety measures.
Conclusions: The discrepancies among the referral centers surveyed between the level of practices and the European Network of Infectious Diseases (EUNID) recommendations have multiple reasons of which the interest of the individuals in charge and the investment they put in preparedness to emerging outbreaks. Despite the fact that the less prepared centers can improve by just updating their practice and policies any support to help them to achieve an acceptable level of biosecurity is welcome
Isolation facilities for highly infectious diseases in Europe - A cross-sectional analysis in 16 countries
BACKGROUND: Highly Infectious Diseases (HIDs) are (i) easily
transmissible form person to person; (ii) cause a
life-threatening illness with no or few treatment options; and
(iii) pose a threat for both personnel and the public. Hence,
even suspected HID cases should be managed in specialised
facilities minimizing infection risks but allowing
state-of-the-art critical care. Consensus statements on the
operational management of isolation facilities have been
published recently. The study presented was set up to compare
the operational management, resources, and technical equipment
among European isolation facilities. Due to differences in
geography, population density, and national response plans it
was hypothesized that adherence to recommendations will vary.
METHODS AND FINDINGS: Until mid of 2010 the European Network for
Highly Infectious Diseases conducted a cross-sectional analysis
of isolation facilities in Europe, recruiting 48 isolation
facilities in 16 countries. Three checklists were disseminated,
assessing 44 items and 148 specific questions. The median
feedback rate for specific questions was 97.9% (n = 47/48)
(range: n = 7/48 (14.6%) to n = 48/48 (100%). Although all
facilities enrolled were nominated specialised facilities'
serving countries or regions, their design, equipment and
personnel management varied. Eighteen facilities fulfilled the
definition of a High Level Isolation Unit'. In contrast, 24
facilities could not operate independently from their co-located
hospital, and five could not ensure access to equipment
essential for infection control. Data presented are not
representative for the EU in general, as only 16/27 (59.3%) of
all Member States agreed to participate. Another limitation of
this study is the time elapsed between data collection and
publication; e.g. in Germany one additional facility opened in
the meantime. CONCLUSION: There are disparities both within and
between European countries regarding the design and equipment of
isolation facilities. With regard to the International Health
Regulations, terminology, capacities and equipment should be
standardised
Recommended from our members
Surveillance of SARS-CoV-2 in Frankfurt am Main from October to December 2020 Reveals High Viral Diversity Including Spike Mutation N501Y in B.1.1.70 and B.1.1.7.
BACKGROUND: International travel is a major driver of the introduction and spread of SARS-CoV-2. AIM: To investigate SARS-CoV-2 genetic diversity in the region of a major transport hub in Germany, we characterized the viral sequence diversity of the SARS-CoV-2 variants circulating in Frankfurt am Main, the city with the largest airport in Germany, from the end of October to the end of December 2020. METHODS: In total, we recovered 136 SARS-CoV-2 genomes from nasopharyngeal swab samples. We isolated 104 isolates that were grown in cell culture and RNA from the recovered viruses and subjected them to full-genome sequence analysis. In addition, 32 nasopharyngeal swab samples were directly sequenced. RESULTS AND CONCLUSION: We found 28 different lineages of SARS-CoV-2 circulating during the study period, including the variant of concern B.1.1.7 (Δ69/70, N501Y). Six of the lineages had not previously been observed in Germany. We detected the spike protein (S) deletion Δ69/Δ70 in 15% of all sequences, a four base pair (bp) deletion (in 2.9% of sequences) and a single bp deletion (in 0.7% of sequences) in ORF3a, leading to ORF3a truncations. In four sequences (2.9%), an amino acid deletion at position 210 in S was identified. In a single sample (0.7%), both a 9 bp deletion in ORF1ab and a 7 bp deletion in ORF7a were identified. One sequence in lineage B.1.1.70 had an N501Y substitution while lacking the Δ69/70 in S. The high diversity of sequences observed over two months in Frankfurt am Main highlights the persisting need for continuous SARS-CoV-2 surveillance using full-genome sequencing, particularly in cities with international airport connections
Huddle Up: Using Mediation to Help Settle the National Football League Labor Dispute
In a patient transferred from Togo to Cologne, Germany, Lassa fever was diagnosed 12 days post mortem. Sixty-two contacts in Cologne were categorised according to the level of exposure, and gradual infection control measures were applied. No clinical signs of Lassa virus infection or Lassa specific antibodies were observed in the 62 contacts. Thirty-three individuals had direct contact to blood, other body fluids or tissue of the patients. Notably, with standard precautions, no transmission occurred between the index patient and healthcare workers. However, one secondary infection occurred in an undertaker exposed to the corpse in Rhineland-Palatinate, who was treated on the isolation unit at the University Hospital of Frankfurt. After German authorities raised an alert regarding the imported Lassa fever case, an American healthcare worker who had cared for the index patient in Togo, and who presented with diarrhoea, vomiting and fever, was placed in isolation and medevacked to the United States. The event and the transmission of Lassa virus infection outside of Africa underlines the need for early diagnosis and use of adequate personal protection equipment (PPE), when highly contagious infections cannot be excluded. It also demonstrates that larger outbreaks can be prevented by infection control measures, including standard PPE
Novel genetically encoded fluorescent probes enable real-time detection of potassium in vitro and in vivo
Changes in intra-and extracellular potassium ion (K+) concentrations control many important cellular processes and related biological functions. However, our current understanding of the spatiotemporal patterns of physiological and pathological K+ changes is severely limited by the lack of practicable detection methods. We developed K+-sensitive genetically encoded, Forster resonance energy transfer-(FRET) based probes, called GEPIIs, which enable quantitative real-time imaging of K+ dynamics. GEPIIs as purified biosensors are suitable to directly and precisely quantify K+ levels in different body fluids and cell growth media. GEPIIs expressed in cells enable time-lapse and real-time recordings of global and local intracellular K+ signals. Hitherto unknown Ca2+-triggered, organelle-specific K+ changes were detected in pancreatic beta cells. Recombinant GEPIIs also enabled visualization of extracellular K+ fluctuations in vivo with 2-photon microscopy. Therefore, GEPIIs are relevant for diverse K+ assays and open new avenues for live-cell K+ imaging
Reply to Fabbris et al. A Viable Alternative. Comment on “Kohmer et al. Self-Collected Samples to Detect SARS-CoV-2: Direct Comparison of Saliva, Tongue Swab, Nasal Swab, Chewed Cotton Pads and Gargle Lavage. J. Clin. Med. 2021, 10, 5751”
We thank Fabbris et al. for their remarks [...
Streptococcus suis: An important zoonotic pathogen for human - prevention aspects
Streptococcus suis is a major porcine pathogen, causing economical health worldwide problems in the global swine industry. It is also emerging as a zoonotic agent capable of causing severe invasive disease in humans exposed to pigs or pork products. The most important clinical sign in swine and human is meningitis, but other pathological conditions have also been described. Serotype 2 is the most commonly associated with diseases in pigs and humans, and also the most frequently reported serotype isolated from diseased animals worldwide. The majority of human infection occurs in pork handlers, particularly in slaughterhouse workers and by minor wounds or skin abrasions contaminated by raw pork or viscera of pigs. Veterinarians should also be aware that a low but real risk may be present when manipulating S. suis-diseased animals that are probably shedding high numbers of this pathogen. Up today, in Greece there is no published epidemiological data for S. suis serotypes in swine herds and the zoonotic risk of S. suis infection in human with daily contact with pigs and pork meat. However, in our experience clinical forms of S. suis infection are common in most greek swine farms. The aim of this review study is to perform recent information about S. suis infection in swine and human, focus on zoonotic risk of this emerging pathogen and prevention strategies
Recommended from our members
Surveillance of SARS-CoV-2 in Frankfurt am Main from October to December 2020 Reveals High Viral Diversity Including Spike Mutation N501Y in B.1.1.70 and B.1.1.7.
BACKGROUND: International travel is a major driver of the introduction and spread of SARS-CoV-2. AIM: To investigate SARS-CoV-2 genetic diversity in the region of a major transport hub in Germany, we characterized the viral sequence diversity of the SARS-CoV-2 variants circulating in Frankfurt am Main, the city with the largest airport in Germany, from the end of October to the end of December 2020. METHODS: In total, we recovered 136 SARS-CoV-2 genomes from nasopharyngeal swab samples. We isolated 104 isolates that were grown in cell culture and RNA from the recovered viruses and subjected them to full-genome sequence analysis. In addition, 32 nasopharyngeal swab samples were directly sequenced. RESULTS AND CONCLUSION: We found 28 different lineages of SARS-CoV-2 circulating during the study period, including the variant of concern B.1.1.7 (Δ69/70, N501Y). Six of the lineages had not previously been observed in Germany. We detected the spike protein (S) deletion Δ69/Δ70 in 15% of all sequences, a four base pair (bp) deletion (in 2.9% of sequences) and a single bp deletion (in 0.7% of sequences) in ORF3a, leading to ORF3a truncations. In four sequences (2.9%), an amino acid deletion at position 210 in S was identified. In a single sample (0.7%), both a 9 bp deletion in ORF1ab and a 7 bp deletion in ORF7a were identified. One sequence in lineage B.1.1.70 had an N501Y substitution while lacking the Δ69/70 in S. The high diversity of sequences observed over two months in Frankfurt am Main highlights the persisting need for continuous SARS-CoV-2 surveillance using full-genome sequencing, particularly in cities with international airport connections
Formation of controllable pH gradients inside microchannels by using light-addressable electrodes
Understanding the influence of the pH value towards microenvironments of bioanalytical systems, especiallyinside lab-on-a-chip or micro total analysis systems, is crucial for the success of experiments. Different approaches are known to control the pH value inside those microchannels and to tailor pH gradients. Nevertheless,the existing concepts often lack the possibility for a flexible adaption of these gradients. To overcome thislimitation, the present work reports on light-addressable electrodes (LAEs) as a tool to create pH gradients at themicro scale. Light-addressable electrodes are based on semiconductor materials in which electron-hole pairs aregenerated by illumination. These free charge carriers can trigger chemical reactions at the semiconductor-electrolyte interface, including the change of the pH value. For this purpose, we have designed LAEs based onglass/fluorine-doped tin oxide/titanium dioxide heterostructures. This work studies the influence of the appliedexternal potential, illumination brightness and illumination area on the maximum pH change and width of thepH gradient using a pH-sensitive fluorescent dye. Furthermore, we evaluate the correlation between the pHchange and electrical charge transfer. Finally, we provide an outlook towards tailoring complex pH gradientsinside microchannels