1,130 research outputs found

    Do Better Neighborhoods for MTO Families Mean Better Schools?

    Get PDF
    Explores the factors that kept children who moved to safer, lower-poverty neighborhoods through the Moving to Opportunity program from accessing better schools, such as lack of change in school district, lack of parental choice, and lack of information

    The connection between entropy and the absorption spectra of Schwarzschild black holes for light and massless scalar fields

    Full text link
    We present heuristic arguments suggesting that if EM waves with wavelengths somewhat larger than the Schwarzschild radius of a black hole were fully absorbed by it, the second law of thermodynamics would be violated, under the Bekenstein interpretation of the area of a black hole as a measure of its entropy. Thus, entropy considerations make the well known fact that large wavelengths are only marginally absorbed by black holes, a natural consequence of thermodynamics. We also study numerically the ingoing radial propagation of a scalar field wave in a Schwarzschild metric, relaxing the standard assumption which leads to the eikonal equation, that the wave has zero spatial extent. We find that if these waves have wavelengths larger that the Schwarzschild radius, they are very substantially reflected, fully to numerical accuracy. Interestingly, this critical wavelength approximately coincides with the one derived from entropy considerations of the EM field, and is consistent with well known limit results of scattering in the Schwarzschild metric. The propagation speed is also calculated and seen to differ from the value cc, for wavelengths larger than RsR_{s}, in the vicinity of RsR_{s}. As in all classical wave phenomena, whenever the wavelength is larger or comparable to the physical size of elements in the system, in this case changes in the metric, the zero extent 'particle' description fails, and the wave nature becomes apparent.Comment: 14 Pages, 4 figures. Accepted for publication in the Journal Entrop

    Magnetization in AIIIBV semiconductor heterostructures with the depletion layer of manganese

    Get PDF
    The magnetic moment and magnetization in GaAs/Ga0.84_{0.84}In0.16_{0.16}As/GaAs heterostructures with Mn deluted in GaAs cover layers and with atomically controlled Mn δ\delta-layer thicknesses near GaInAs-quantum well (\sim3 nm) in temperature range T=(1.8-300)K in magnetic field up to 50 kOe have been investigated. The mass magnetization all of the samples of GaAs/Ga0.84_{0.84}In0.16_{0.16}As/GaAs with Mn increases with the increasing of the magnetic field that pointed out on the presence of low-dimensional ferromagnetism in the manganese depletion layer of GaAs based structures. It has been estimated the manganese content threshold at which the ferromagnetic ordering was found.Comment: 8 pages, 3 figure

    Barriers and facilitators experienced in collaborative prospective research in orthopaedic oncology

    Get PDF
    Recerca col·laborativa; Grup focal; Oncologia ortopèdicaCollaborative research; Focus group; Orthopaedic oncologyInvestigación colaborativa; Grupo focal; Oncología ortopédicaObjectives As tumours of bone and soft tissue are rare, multicentre prospective collaboration is essential for meaningful research and evidence-based advances in patient care. The aim of this study was to identify barriers and facilitators encountered in large-scale collaborative research by orthopaedic oncological surgeons involved or interested in prospective multicentre collaboration. Methods All surgeons who were involved, or had expressed an interest, in the ongoing Prophylactic Antibiotic Regimens in Tumour Surgery (PARITY) trial were invited to participate in a focus group to discuss their experiences with collaborative research in this area. The discussion was digitally recorded, transcribed and anonymised. The transcript was analysed qualitatively, using an analytic approach which aims to organise the data in the language of the participants with little theoretical interpretation. Results The 13 surgeons who participated in the discussion represented orthopaedic oncology practices from seven countries (Argentina, Brazil, Italy, Spain, Denmark, United States and Canada). Four categories and associated themes emerged from the discussion: the need for collaboration in the field of orthopaedic oncology due to the rarity of the tumours and the need for high level evidence to guide treatment; motivational factors for participating in collaborative research including establishing proof of principle, learning opportunity, answering a relevant research question and being part of a collaborative research community; barriers to participation including funding, personal barriers, institutional barriers, trial barriers, and administrative barriers and facilitators for participation including institutional facilitators, leadership, authorship, trial set-up, and the support of centralised study coordination. Conclusions Orthopaedic surgeons involved in an ongoing international randomised controlled trial (RCT) were motivated by many factors to participate. There were a number of barriers to and facilitators for their participation. There was a collective sense of fatigue experienced in overcoming these barriers, which was mirrored by a strong collective sense of the importance of, and need for, collaborative research in this field. The experiences were described as essential educational first steps to advance collaborative studies in this area. Knowledge gained from this study will inform the development of future large-scale collaborative research projects in orthopaedic oncology

    Disruption of marine habitats by artificial light at night from global coastal megacities

    Get PDF
    Half of globally significant megacities are situated near the coast, exposing urban marine ecosystems to multiple stressors such as waste-water discharge containing a host of organic and inorganic pollutants, air and noise pollution. In addition to these well recognized sources, artificial light at night (ALAN) pollution is inseparable from cities but poorly quantified in marine ecosystems to date. We have developed a time- and wavelength-resolving hydrological optical model that includes solar (daylight and twilight components), lunar and ALAN source terms and propagates these spectrally through a tidally varying water column using Beer’s Law. Our model shows that for 8 globally distributed cities surface ALAN dosages are up to a factor of 6 greater than moonlight, as ALAN intensities vary little throughout the night, over monthly or seasonal cycles. Moonlight only exceeds ALAN irradiances over the ±3-day period around full moon, and particularly during the brightest moons (mid-latitude winter, at zenith). Unlike the relatively stable surface ALAN, underwater ALAN varies spectrally and in magnitude throughout the night due to tidal cycles. The extent of ALAN in-water attenuation is location-specific, driven by the season, tidal range and cycle, and water clarity. This work highlights that marine ALAN ecosystem pollution is a particularly acute global change issue near some of the largest cities in the world
    corecore