Estimation of bending moments in box-beam bridges using cross-sectional deflections, June 1968,

S.J. Fang
M.A. Macias-Rendon
D. A. VanHorn

Follow this and additional works at: http:// preserve.lehigh.edu/engr-civil-environmental-fritz-labreports

Recommended Citation

Fang, S. J.; Macias-Rendon, M. A.; and VanHorn, D. A., "Estimation of bending moments in box-beam bridges using cross-sectional deflections, June 1968, " (1968). Fritz Laboratory Reports. Paper 252.
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports/252

ESTIMATION OF BENDING MOMENTS

 IN BOX-BEAM BRIDGES
USING CROSS.SECTIONAL DEFLECTIONS

FRITZ ENGINEERING
LABORATORY LIBRARY
by
Shu-jin Fang
Miguel A. Macías Rendón
David A. VanHorn

Fritz Engineering Laboratory Report No. 322.2

Project 322

A STRUCTURAL MODEL STUDY
OF LOAD DISTRIBUTION IN HIGHWAY BRIDGES

Progress Reports Completed to Date

Progress
 Report No.

1 A STRUCTURAL MODEL STUDY OF LOAD DISTRIBUTION IN BOX-BEAM BRIDGES. Macías Rendón, M. A. and VanHorn, D. A., F. L. Report 322.1, May 1968

2 ESTIMATION OF BENDING MOMENTS IN BOX-BEAM BRIDGES USING CROSS-SECTIONAL DEFLECTIONS. Fang, S. J., Macías Rendón, M. A. and
VanHorn, D. A., F. L. Report 322.2, June 1968

by

Shu-jin Fang
Miguel A. Macías Rendón
David A. VanHorn

This work was conducted as part of the project "A Structural Model Study of Load Distribution in Highway Bridges", sponsored by the National Science Foundation. The opinions, findings, and conclusions expressed in this report are those of the writers and not necessarily those of the sponsors.

Department of Civil Engineering
Fritz Engineering Laboratory
Lehigh University
Bethlehem, Pennsylvania

June 1968

Fritz Engineering Laboratory Report No. 322.2

TABLE OF CONTENTS

page
ABSTRACT 1

1. INTRODUCTION 3
1.1 Background 3
1.2 Object and Scope 3
1.3 Previous Research 6
2. THEORETICAL ANALYSIS 7
2.1 Statement of Problem 7.
2.2 Assumptions 10
2.3 Development 11
3. EXPERIMENTAL STUDY 19
3.1 General Consideration 19
3.2 Test Program 19
4. TEST RESULTS 22
4.1 Presentation of Test Results 22
4.1.1 Experimental Moment Percentages 22
4.1.2 Deflection Percentages and 23 Rotation Percentages
4.2 Analysis of Test Results 24
4.2.1 Cross-Sectional Strain Distribution 24
4.2.2 Location of Neutral Axes 25
4.2.3 Correlation Between Rotation and 26 Moment Percentages
page
4.2.4 Correlation Between Moment and 27
Deflection Percentages
4.2.5 Effects of Vehicular Loading 29
4.2.6 Effects Due to Other Parameters 30
5. PROPOSED METHOD FOR ESTIMATING BENDING MOMENT 31
5.1 Development of the Proposed Method 31
5.2 Illustrated Example 35
5.3 Comparisons of Experimental and Estimated 37 Moment Percentages
5.4 Validity and Limitations of the Proposed 39 Me thod
6. CONCLUSIONS 41
7. ACKNOWLEDGMENTS 44
8. TABLES 45
9. FIGURES 82
10. REFERENCES 112

Abstract

This report describes part of the research work conducted under the Fritz Laboratory Project 322, entitled "A Structural Model Study of Load Distribution in Highway Bridges"。

The purposes of this work were to: 1. Find an analytical correlation between the transverse distributions of longitudinal bending moments and the cross-sectional deflections in box-beam bridges. 2. Develop a practical method for the estimation of bending moments in box-beam bridges by the use of cross-sectional deflections.

To experimentally verify the proposed method, test results from seventeen small scale (1/16) Plexiglas box-beam bridge models are reported. Details of the fabrication, instrumentation and testing of the models can be found in Ref. 9. In particular, it should be noted that these seventeen Plexiglas models were tested under static vehicular loads, using the creep compensating technique.

An analysis of the experimental results and a proposed method for estimating bending moments are presented. The estimated

values exhibit good agreement with the model test results. The contribution of curbs and parapets to the flexural stiffness of the bridge was taken into account in the analysis. The influences on the correlation between bending moments and cross-sectional deflections due to curbs, parapets, diaphragms, size and spacing of beams, and thickness of slab are discussed.

The proposed method was used to estimate bending moments in one existing bridge. The estimated values were found to be close to those obtained in the field test. As a result of this investigation, it is believed that the use of measured deflections, along with the geometric properties of the crosssection, may enable an economical and accurate estimation of the lateral load distribution in prestressed concrete box-beam bridges.

1. INTRODUCTION

1.1 Background

Bridge structures form one of the most important components of modern highway systems. Over the past fifteen years, many new concepts have been introduced in the area of bridge design. One of the more recent concepts was the design of beamslab bridges utilizing precast, prestressed concrete box beams, spread apart and equally spaced, along with a cast-in-place concrete slab. The curbs and parapets are also cast in place, using reinforcing bars in the connection with the slab. In bridges of this type constructed in Pennsylvania, the beams are designed according to the provisions set forth in the Pennsylvania Department of Highways Bridge Division Standards ST-200 through ST-208. ${ }^{13}$ These provisions closely parallel those covering the design of longitudinal beams as set forth in the A.A.S.H.O. Standard Specifications for Highway Bridges. ${ }^{1}$

1.2 Object and Scope

Recently, the field tests of several in-service highway bridges have established the fact that the actual distribution of maximum vehicular loads to the beams is not in line with the distribution assumed in the design. ${ }^{5}$ In these tests,
strain gages attached to the superstructure at selected locations were used to evaluate the load distribution.

To approach the evaluation in a different way, this investigation is directed toward the possible correlation of the transverse distribution of bending moment in the longitudinal beams with the cross-sectional deflections. The principal advantage of using cross-sectional deflections to evaluate the bending moments is that there are considerably fewer problems associated with the installation and operation of deflection equipment than with strain gage recording equipment. Equally important is the fact that the deflections are a form of an integrated response of the entire structure; while the fiber strains are of a more local nature, and greatly affected by singularities in the immediate vicinity of the strain measurement. If a fine correlation between the bending moments and deflections can be found, the primary use of deflections in field studies and laboratory work could result in more economical and efficient testing methods.

The principal objectives of the study presented in this report are:

1. To find a theoretical correlation between the transverse distribution of
bending moment in the longitudinal beams and the cross-sectional deflections, in prestressed concrete spread box-beam bridges, with or without curbs, parapets, and diaphragms.
2. To develop a practical method of estimating the individual bending moments by using the cross-sectional deflections. The deflection of each box beam can be either directly measured by dial gages or by deflectometers, or even calculated by one of the existing theories of analysis. ${ }^{10}$

The study presented in this report is a part of the research work conducted under the Fritz Laboratory Project 322, entitled "A Structural Model Study of Load Distribution in Highway Bridges". The primary objective of the overall project is the investigation of static live load distribution in prestressed concrete spread box-beam bridges.

In order to experimentally verify the analytical correlation and the proposed method, presented in Chapters 2 and 5, respectively, a systematic series of seventeen small scale (1/16) Plexiglas box-beam bridge models was designed and fabricated, assembled and tested. Comparisons of the distributions of experimental bending moments with experimental cross-sectional deflections and with estimated distributions of bending moments are given
in this report. In addition, the influence of curbs, parapets, size and spacing of beams, and thickness of slab, on the correlation between bending moments and cross-sectional deflections, is discussed in detail.

1.3 Previous Research

A number of field investigations have been conducted on highway bridges of the beam-slab type. Most of the bridges tested were I-beam bridges with either steel or prestressed concrete beams. Only a limited number of studies have dealt with prestressed concrete box-beam bridges. In particular, relativèly little experimental and theoretical work has been carried out in the study of simply-supported, spread box-beam bridges.

An extensive annotated bibliography on lateral distribution of loads in bridges, including slab bridges and beamslab bridges, is given in Ref. 14. Since the information presented herein is evaluated by model tests, some of the previous model studies on load distribution are included as Refs. 2, 3, 4, 6, 7, 8, 11, 15, 16, 18, and 19.

2. THEORETICAL ANALYSIS

2.1 Statement of Problem

In the theoretical work presented in Ref. 17, a single distribution coefficient was established for the determination of both deflections and longitudinal bending moments in a beam-slab bridge. This single distribution coefficient was applied only to bridge cross-sections with equal stiffness in all of the beams, and curb and parapet were not considered.

Satisfactory agreement with the theory was found in tests reported in Refs. 7 and 8 where, after a careful comparison of the theoretical distribution coefficients for longitudinal bending moments with the experimental distribution coefficients, it was concluded that the agreement was acceptable. Furthermore, an excellent agreement was found in the comparisons between the theoretical and experimental distribution coefficients for deflections.

On the other hand, the previous conclusions were not agreed upon by other investigators. Comparison of the strains in the bottom flanges of I beams with the deflections in a beamslab bridge showed no consistent correlation. ${ }^{6}$ The same problem
was observed in Ref. 12, where it was concluded that the bending moments and the deflections in the beams are not proportional as determined from field test results. It was also pointed out in Ref. 11 that there is a considerable discrepancy between the experimental distribution of bending moments and the calculated distribution coefficients, based on a sinusoidal longitudinal distribution of a concentrated load. Thus, an approximate adjustment to the Guyon-Massonnet theory was proposed, ${ }^{11}$ in order to take into account the effect of a concentrated load.

Confusion may arise from the fact that different conclusions were reached by several investigators. Therefore, some of the assumptions in the theory will be examined.

The Guyon Massonnet method ${ }^{5}$ is based on the following two main assumptions:

1. That a constant stiffness exists in both the longitudinal and transverse directions. In other words, the effects of a stiffening edge member and beams of different size cannot be considered.
2. That the transverse distribution of actual concentrated loads is the same as the transverse distribution of loads which are distributed sinusoidally along the length of the bridge.

It is a fact that most of the existing prestressed concrete bridges have curbs and parapets. Test results have shown that some composite action exists between curbs and beams, and between curbs and parapets. ${ }^{5}$ Thus, the first assumption cannot be satisfied when the curbs and parapets are present. If the effects due to curbs and parapets are not accounted for, errors will be introduced.

In addition, there is a substantial difference between the actual single concentrated load and the assumed sinusoidal load varying along the bridge. This difference is one of the reasons for the disagreement between the theoretical distribution coefficients for bending moments and experimentally determined values. Finally, the assumption of Poisson's ratio equal to zero is another source of error in the method under discussion.

Furthermore, it is believed that it is not adequate to use the strains at the bottom face of beams as a direct indication of bending moments in beams 0^{427} The evaluation of the true bending moment in the beams should take into account the contribution of the individual slabs, since equilibrium should exist in each beam-slab unit. To more accurately determine the bending moments in beam-slab units, the strains along the side faces of beams, top of slab, curbs, and parapets should be
measured carefully, as well as the strains on the bottom faces of beams.

In order to better understand the correlation between the transverse distributions of longitudinal bending moments and the cross-sectional deflections in a single span, simply-supported box-beam bridge in which curbs and parapets may or may not be present, a theoretical analysis is given in this chapter. Finally, a simplified method of estimating bending moments in the beams by using the cross-sectional deflections and geometrical configuration of the cross-section of the bridge is proposed in Chapter 5.

2.2 Assumptions

Before the analysis can be developed, the following assumptions are made.

1. The structure is homogeneous and isotropic before the occurrence of any cracking (both in longitudinal and transverse directions) or excessive deformation.
2. The thickness of each plate component is assumed to be constant and uniform.
3. A linear relationship exists between forces and deflections. Only elastic
behavior of the bridge is considered in the analysis.
4. A full composite action exists between beams, slab, curbs, and parapets. All connections insure that no relative displacements between components can occur.
5. The end supports provide no longitudinal restraint for each beam-slab unit.
6. The bending moment diagrams of all beamslab units are assumed similar in geometry.
7. The secondary effects on the deflection of the beams due to twisting are negligible.
8. The transverse bending moments (with respect to a vertical axis) in beam-slab units are assumed to be small compared with the longitudinal bending moments (with respect to horizontal axis) and can be neglected.
9. The presence of diaphragms does not affect the analysis.

2.3 Development

A simply-supported, box-beam bridge can be regarded as an assemblage of a set of beam-slab units. Each beam-slab unit is composed of a box beam and an individual width of slab. Curbs and parapets act in combination with the exterior beamslab units. By Assumption 9, midspan and end diaphragms, which
are originally designed in order to improve the load distribution of the bridge, are not considered in this analysis. It is believed that the diaphragms will not substantially affect the correlation between the transverse distributions of longitudinal bending moments and distributions of cross-sectional deflections. This concept will be discussed in Chapter 5.

A typical cross-section of a box-beam bridge is given in Fig. la. When the deck of the bridge is subjected to a vehicular load, five internal forces and moments are produced in any cross-section of each beam-slab unit. These forces and moments are longitudinal bending moment M_{x}, transverse bending moment M_{y}, total vertical shear force S_{y}, total horizontal shear force S_{x}, and twisting moment $M_{x y}$, which is shown in Fig. Ib.

The vertical deflection at the centroid, δ_{y}, of given beam-slab unit can be written as

$$
\begin{equation*}
\delta_{y}=\left(\delta_{y}\right)_{\text {bending }}+\left(\delta_{y}\right)_{\text {shear }}+\left(\delta_{y}\right)_{\text {torsion }} \tag{1}
\end{equation*}
$$

As a beam-slab unit has a box beam of rigid closed cross-section, it is reasonable to consider the unit as a solid beam insofar as its behavior under the combined flexure and torsion is concerned.

Consequently, the cross-section of each beam-slab unit which is initially plane remains plane after deformation, and there is no extension or shearing strain in the plane of the cross-section. Saint Venant's principle is valid in this case. According to this principle and the adopted hypothesis, the internal forces acting on the cross-section lead to one resultant, which may be replaced by an equivalent system of forces without changing the state of strain of the mathematical model adopted for the solid beam. The beam-slab unit would undexgo tonsion according to the law of pure torsion. Since the effect of the vertical deflection due to pure torsion is neglected according to Assumption 7, and since the effect of shear force is very small, Eq. 1 can be simplified as

$$
\delta_{\mathrm{y}} \cong\left(\delta_{\mathrm{y}}\right)_{\text {bending }}
$$

considering a beam-slab unit as simply supported at both ends, (Assumption 5), the vertical deflection at the centroid of a given section due to bending can be found from Fig. ib as follows:

The deflection in the VV direction is

$$
\delta_{\mathrm{vv}}=F\left(\frac{M_{u u}}{E I_{u u}}\right)
$$

and the deflection in the $U U$ direction is

$$
\delta_{u u}=F\left(\frac{M_{v v}}{E I_{v v}}\right)
$$

where $M_{u u}$ and $M_{v v}$ are the bending moments with respect to Axes UU and VV, respectively, $I_{u u}$ and $I_{v v}$ are the moments of inertia with respect to Axes UU and VV, respectively,
and $\quad F$ is a certain function depending on the bending moment diagram and on the position of the section.

Superimposing the vertical components of $\delta_{v v}$ and $\delta_{u u}$, the total vertical deflection is

$$
\begin{align*}
\delta_{y} & =\delta_{u u} \operatorname{Sin} \theta+\delta_{v v} \cos \theta \\
& =F\left(\frac{M_{v v}}{E I_{v v}}\right) \operatorname{Sin} \theta+F\left(\frac{M_{u u}}{E I_{u u}}\right) \cos \theta \tag{2}
\end{align*}
$$

By the law of transformation of coordinate axes, the moments of inertia $I_{u u}$, $I_{v v}$, and $I_{u v}$ are expressed in terms of $I_{x x}, I_{y y}$, and $I_{x y}$.

$$
\left[\begin{array}{cc}
I_{u u} & -I_{u v} \tag{3}\\
-I_{u v} & I_{v v}
\end{array}\right]=R\left[\begin{array}{cc}
I_{x x} & -I_{x y} \\
-I_{x y} & I_{y y}
\end{array}\right] R^{T}
$$

wherein R is the rotation matrix and

$$
R=\left[\begin{array}{rr}
\operatorname{Cos} \theta & -\operatorname{Sin} \theta \\
-\operatorname{Sin} \theta & \operatorname{Cos} \theta
\end{array}\right]
$$

Substituting R into Eq. 3, we obtain

$$
\begin{align*}
& I_{u u}=I_{x x} \cos ^{2} \theta+I_{y y} \sin ^{2} \theta-2 I_{x y} \sin \theta \cdot \cos \theta \\
& I_{y y}=I_{x x} \sin ^{2} \theta+I_{y y} \cos ^{2} \theta+2 I_{x y} \sin \theta \cdot \cos \theta \tag{4}\\
& I_{u v}=\left(I_{y y}-I_{x x}\right) \sin \theta \cos \theta-I_{x y} \cos (2 \theta)
\end{align*}
$$

$M_{u u}$ and $M_{v v}$ can be expressed as

$$
\begin{align*}
& M_{u u}=M_{x} \cos \theta+M_{y} \sin \theta \\
& M_{v v}=-M_{x} \sin \theta+M_{y} \cos \theta \tag{5}
\end{align*}
$$

Substituting Eqs. 4 and 5 into Eq. 2

$$
\begin{align*}
\delta_{y} & =\frac{F}{E}\left(\frac{M_{x} \cos \theta+M_{y} \sin \theta}{I_{x x} \cos ^{2} \theta+I_{y y} \sin ^{2} \theta-2 I_{x y} \sin \theta \cos \theta}\right) \cos \theta \\
& +\frac{F}{E}\left(\frac{-M_{x} \sin \theta+M_{y} \cos \theta}{I_{x x} \sin ^{2} \theta+I_{y y} \cos ^{2} \theta+2 I_{x y} \sin \theta \cos \theta}\right) \sin \theta \tag{6}
\end{align*}
$$

According to Assumption 8, Eq. 6 can be simplified as

$$
\begin{align*}
\delta_{y} & =F \frac{M_{x}}{E}\left(\frac{\cos ^{2} \theta}{I_{x x} \cos ^{2} \theta+I_{y y} \sin ^{2} \theta-2 I_{x y} \operatorname{Sin} \theta \cos \theta}\right. \\
& \left.-\frac{\sin ^{2} \theta}{I_{x x} \sin ^{2} \theta+I_{y y} \cos ^{2} \theta+2 I_{x y} \sin \theta \cos \theta}\right) \tag{7}
\end{align*}
$$

Setting

$$
\frac{I_{e q}=}{\frac{1}{I_{x x} \operatorname{Cos}^{2} \theta+I_{y y} \operatorname{Sos}^{2} \theta}-I_{x y} \operatorname{Sin}(2 \theta)}-\frac{\operatorname{Sin}^{2} \theta}{I_{x x} \operatorname{Sin}^{2} \theta+I_{y y} \operatorname{Cos}^{2} \theta+I_{x y} \operatorname{Sin}(2 \theta)}
$$

wherein, $I_{e q}$ is defined as "Equivalent Moment of Inertia" for each beam-slab unit. If $\theta=0, I_{e q}=I_{x x}$ 。

Substituting Eq. 8 into Eq. 7 and rearranging, we obtain

$$
\begin{equation*}
M_{x}=\frac{\left(E I_{e q}\right) \delta_{y}}{F} \tag{9}
\end{equation*}
$$

This is the expression for the longitudinal bending moment at a cross-section of a beam-slab unit.

Considering the equilibrium condition of longitudinal bending moments at any chosen cross-section of the bridge

$$
\begin{equation*}
\left(M_{x}\right)_{E X T}=\left(M_{x}\right)_{\text {INT. }}=\sum_{i=1}^{i=m}\left(M_{x}\right)_{i}=\sum_{i=1}^{i=m} \frac{E_{i}\left(I_{e q}\right)_{i}}{F_{i}}\left(\delta_{y}\right)_{i} \tag{10}
\end{equation*}
$$

where $\left(M_{x}\right)_{\text {EXT }}$ = total external bending moment

$$
\left(M_{x}\right)_{\text {INT. }}=\text { total internal resisting bending moment }
$$

$$
\mathrm{m} \quad=\text { number of beams }
$$

$$
\text { i } \quad=\text { subscript used to identify beam-slab units }
$$

By definition, the moment percentage (M.P.) is

$$
(\text { M.P. })_{i}=\frac{\left(M_{x}\right)_{i}}{\sum_{i=1}^{i=m}} \times 100
$$

Using Eq. 10

$$
\text { (M.P.) }{ }_{i}=\frac{\frac{E_{i}\left(I_{e q}\right)_{i}}{F_{i}}\left(\delta_{y}\right)_{i}}{\sum_{i=m} \frac{E_{i}\left(I_{e q}\right)_{i}}{F_{i}}\left(\delta_{y}\right)_{i}} \times 100
$$

According to Assumptions 1 and $6, E_{i}$ and F_{i} are the same for all beam-slab units; therefore, a correlation between the transverse distribution of longitudinal bending moments in beam-slab units and the cross-sectional deflections is found as follows:

$$
\begin{equation*}
\text { (M.P. })_{i}=\frac{\left(I_{e q}\right)_{i}\left(\delta_{y}\right)_{i}}{\sum_{i=m}\left(I_{e q}\right)_{i}\left(\delta_{y}\right)_{i}} \tag{11}
\end{equation*}
$$

For the special case when ($\left.I_{e q}\right)_{i}$ is the same for all beam-slab units, Eq. 11 becomes

$$
\begin{equation*}
(\text { M.P. })_{i}=\frac{\left(\delta_{y}\right)_{i}}{\sum_{i=1}\left(\delta_{y}\right)_{i}}=(\text { D.P. })_{i} \tag{12}
\end{equation*}
$$

Ir other words, the moment percentages (M.P.) will be equal to the deflection pereentages (D.P.), if the bridge has identical equivalent moments of inertia for all beam-slab units.

3. EXPERIMENTAL STUDY

3.1 General Consíderation

In this chapter, brief descriptions of the test program and tested models used in this study are presented. Details concerning the construction, instrumentation, fabrication, and modeling techniques of the models, as well as the similitude requirements considened, can be found in Ref. 9 .

3.2 Test Program

The test program for the models was designed with the objectives mentioned in Section 1.2.

In the experimental model investigation, a series of seventeen 1/16-scale Plexiglas models was fabricated and tested. All of the bridges were simply supported over a span of 48.94 inches.

According to the method of fabrication, the models can be classified into two categories: (1) Glued model, in which all of the components were cemented together using Ethylene Dichloride, and (2) Bolted model, in which pre-fabricated beams, slab, curbs, parapets, and diaphragms were connected together by screws or tie-rods. A brief description of all models is shown in Table 1 .

According to the geometry of the cross-section, the models can be separated into two groups: one group of models without curbs and parapets, and the other with curbs and parapets. Within each group, bridges can again be divided into two sub-groups: (1) bridges with diaphragms, and (2) bridges without diaphragms. For the convenience of simple use in later chapters, it might be helpful to classify the bridges as follows:

1. Case $(0,0,0)$ represents bridges without curbs, parapets, and diaphragms, such as models B1, B5, B9, B15, and B16.
2. Case $(0,0,1)$ represents bridges without curbs and parapets, but with diaphragms, such as models B2, B6, and B10.
3. Case (1,1,0) represents bridges without diaphragms, but with curbs and parapets, such as models B3, B7, and B11.
4. Case ($1,1,1$) represents bridges with all elements. Most real bridges belong to this category. Models A1, B4, B8, B12, B13, and B14 are in this case.

Bridge model B 4 was chosen as the typical bridge in this study. The cross-sectional dimensions are shown in Fig. 1a. The five loading lanes covering the entire clear width of 20.88 inches of the roadway, are numbered 1 through 5 from the east edge, westward. Four identical box beams, representing prototype
beams 4 feet wide and 39 inches deep. A longitudinal view of a bolted model is given in Fig. 2, and the arrangement of all basic crossmections of models is shown in Fig. 3.

Electrical wire-resistance strain gages were mounted at each of three sections. Vertical dial gages were placed under the box beams at the first and at the second sections gaged, which are 28.22 inches and 17.72 inches from the south support, respectively.

A typical test setup is shown in Figs. 3 and $4 .{ }^{9}$

4. TEST RESULTS

4.1 Presentation of Test Results

4.1.1 Experimental Moment Percentages

In this study, the moment percentage for a specific beam is defined as the bending moment in that beam divided by the sum of the bending moments in all of the beams at a given section. The experimental bending moments were calculated from stress blocks obtained from the measured strains in each beam.

The exterior beams were analyzed as acting compositely with the slab, curbs, and parapets whenever they were present. Thus, the bending moments contributed by the individual slab, curbs, and parapets were taken into account in the calculations of the experimental moment percentages for all of the beams. Through the use of a GE 225 digital computer with a rather complicated, but comprehensive program, these calculations were performed on the same day of the test. The synthetic description of this computer program can be found in Ref. 9.

The experimental moment percentages for all beams with the load on lanes 1,2 , and 3 are presented in table form. Tables 3, 4, 5., 6, 15, and 16 contain experimental moment percentages at Section 1 (nominal maximum moment) for the models

$$
-22=
$$

with four 4 ft. $\times 39$ in. (4×39) box beams; Tables 7, 8, 9, and 10 present similar values for models with four 4×30 box beams; and Tables $11,12,13$, and 14 correspond to the bridge models with four 3×42 box beams. Furthermore, the results for the bridge models Al, B15, and B16 are presented in Tables 2, 17, and 18.

4.1.2 Deflection Percentages and Rotation Percentages

Section 2 (nominal third point of the span), in addition to Section 1, was gaged in order to measure cross-sectional deflections and beam rotations. As deflections were measured at the east and west faces of each beam, the average of these two values was used to represent the mid-width deflection of each beam.

The deflection percentage of a particular beam is defined as the deflection of that beam divided by the sum of the deflections of all of the beams at a given section. The rotation percentage of a particular beam is the rotation of that beam divided by the sum of the absolute values of the rotations of all of the beams at a given section.

Values of deflection percentages and rotation percentages at Section 1 in the model tests are listed in Tables 2 through 18.

4.2 Analysis of Test Results

4.2.1 Cross-Sectional Strain Distribution

The experimental strains from two model tests are plotted along the faces of an exterior beam in Figs. 4 and 5. In most instances, a linear relationship existed in the slab and box beams. In the glued model Al, in which the curbs and parapets were cemented together, this linear variation extended with full interaction into the curbs, and with approximately 60% interaction into the parapets. In the bolted models, in which curbs and parapet pieces were bolted to the slab and to the curb, respectively, the measured strains at the top surface of the parapets were only 20% to 30% of the strains that would correspond to full linear strain variation. A possible reason for this deviation is mainly that the connection between curbs and parapets was not strong enough to develop full composite action. Another cause is that the strain gages at the top surface of the parapets were not in vertical alignment with those in the box beams and curbs. However, the experimental strain distribution obtained from model tests demonstrated that full composite action was developed in the interior beam-slab units, and in the exterior beams between the beam-slab unit and the curb.

Several strain readings were taken to investigate the strain distribution in the top surface of the slab. The
longitudinal slab strains, although found to be in the same vertical linear variation with the strains in the corresponding beams, were found to depart somewhat from the linear variation in the transverse direction.

4.2.2 Location of Neutral Axes

The computation of the neutral axis location was based on linear strain distribution. The distances, in inches, from the top fiber of the box beam to the neutral axis on the east and west faces of the beams in models Al and BI are presented in Table 19. Based on these values, the locations of neutral axes were plotted in Figs. 6 and 7. The rotations of the neutral axes with respect to horizontal axes were also calculated and tabulated in these figures.

The test results shown indicate that the neutral axes in the exterior beams were inclined for the load on any lane, while appreciable inclination of interior beam neutral axes occurred only when the load was on the side of the bridge opposite to the beam under consideration. The inclination of the neutral axes, which was less than 15° in all cases, did not produce an appreciable effect in the calculation of the bending moment M_{x}, if θ was assumed equal to 0° in Eqs. 8 and 9.

4.2.3 Correlation Between Rotation and Moment Percentages

From the test results presented, it can be seen that the transverse rotation of the beams was very small, and that the range of absolute rotations under vehicular load varied from 0 to 800 millionths of a radian, depending on the rigidity of the cross-section of the bridge.

In order to study the correlation between rotations of the beams and bending moment distribution, four typical plots of λ (the ratio of experimental moment percentage to deflection percentage) against rotation percentages are shown in Figs. 20, 21, 22, and 23. Each plot was chosen, from the test results of seventeen models, to represent a typical case. Figures 20 through 23 show results of model B1 for Case ($0,0,0$) ; model B6 for Case $(0,0,1)$; model B11 for Case $(1,1,0)$ and model Al for Case ($1,1,1$), respectively.

A common characteristic was observed. In each figure, λ-rotation percentage relationships were plotted for both exterior and interior beams with the truck on the five different loading lanes. These figures indicate that the values of λ were insensitive to rotation of the beams when the load was on the same half of the roadway. The variation of λ increased considerably when the load was on the other half of the roadway. It
was also observed that the rotation percentages decreased appreciably when the load was moved from lane 4 to lane 5.

As a consequence of these observations, it is believed that the rotations of the beam cross-sections do not bear any primary relationship with the bending moment distributions. In other words, no simple correlation was found between moment percentages and rotation percentages. On the other hand, it is believed that the rotations of the beams should play a more important role in torsional moment distribution. No attempt has been made to establish a correlation between torsional moment distribution and rotation percentages.

4.2.4 Correlation Between Moment and Deflection Percentages The experimental moment percentages in all beams at

 test Section 1 ane compared with the deflection percentages in Figs. 8 through 19. Four model test results were chosen to represent the comparisons in four typical cases, as mentioned in Section 4.2.3. In each case, companisons are made in three figures corresponding to the load in lanes 1,2 , and 3 , respectively.Figures 8, 9, and 10 show a typical comparis on of the experimental moment percentages and deflection percentages for Case $(0,0,0)$. It can be easily seen that the ratios of moment
percentages to deflection percentages are very, close to a value of one, with a maximum relative deviation of 10.5% in interior beams and of 7.1% in exterior beams. In addition, these figures show that the exterior beams had slightly smaller moment percentages than deflection percentages.

Using the data from model B6, the effect of midspan and end diaphragms on the moment distributions and deflection distributions is illustrated in Figs. 11, 12, and 13. It can be observed that the experimental moment percentages in the exterior beams are slightly langer than the deflection percentages when the load is placed on lane lor lane 2. Furthermore, Fig. 13 shows that moment percentages are almost identical to deflection percentages when the load is on lane 3 .

In addition, the effect due to diaphragms is obtained by a comparison of the data from models Bl and B2. The most noticeable consequence of adding diaphragms is that the load is distributed more uniformly across the bridge. However, the corresponding changes introduced in the moment percentages and in the deflection percentages of exterior beams are essentially the same. In other words, the presence of diaphragms did not produce any significant change on the correlation between bending moment percentages and deflection percentages.

For the bridges with curbs and parapets, Case ($1,1,0$) and Case $(1,1,1)$, the comparisons of experimental moment and deflection percentages are given in Figs. 14 through 19. In these two cases, there is an appreciable discrepancy between the bending moment distributions and deflection distributions. In general, for exterior beams, the moment percentages are substantially higher than the corresponding deflection percentages, but the opposite situation occurs for interior beams. The values of ratios of moment percentages to deflection percentages range between 0.91 to 1.27 for exterior beams, and between 0.65 to 0.91 for interior beams. This discrepancy is especially obvious when the load is on lane l. Therefore, in these two cases, the deflection distribution cannot be used as a direct indication of the bending moment distribution. As a result, the difference in the flexural stiffness of the exterior and interior beam-slab units should be taken into consideration.

4.2.5 Effects of Vehicular Loading

The close agreement between moment and deflection percentages in the bridges without curbs and parapets indicates that it may be reasonable to conclude that the moment-deflection relationship is quite similar for all of the beams when the bridge is subjected to vehicular loading. Therefone, there is no need
to make a correction to take into account the effects due to each individual concentrated wheel load, as suggested in Ref. 4.

Abstract

4.2.6 Effects Due to Other Parameters

Comparison of test results from model B4 with those from models B13 and B14, shows the effect of different thickness of slab on the correlation between moment and deflection percentages. Although a thicker slab produced a somewhat more uniform lateral load distribution than a thinner slab, the ratios of moment percentages to deflection percentages were nearly identical in these three cases. Hence, the correlation between bending moment distributions will nemain the same for the box-beam bridges with different thicknesses of slab.

In addition, Table 35 shows that the experimental moment percentages for model B15 are in close agreement with the deflection percentages. The lateral load distributions obtained ane very close to those in model Bl. The same agreement may be found in Table 36 for the bridge with seven smaller identical (3×24) box beams. All of the above observations indicate that the number, size, and spacing of box beams do not significantly affect the correlation between moment percentages and deflection percentages.
5. PROPOSED METHOD FOR ESTIMATING BENDING MOMENT

5.1 Development of the Proposed Method

As discussed in Chapter 2, the elastic structural behavior of box-beam bridges under vehicular loads is extremely complicated, and no exact method of analysis has been reached. The analysis is further complicated by the presence of curbs, parapets, and diaphragms. Therefore, drastic simplifications and assumptions are essential in a reasonably approximate theoretical solution.

The assumptions made in Chapter 2 led to a simplified correlation between distributions of longitudinal bending moments and of cross-sectional deflections, as shown in Eqs. 11 and 12. It is apparent that the computations for $I_{\text {eq }}$, equivalent moments of inertia of individual beam-slab units, are still rather lengthy and cumbersome. In order to simplify the practical application, one further assumption should be made: the neutral axes in box beams are assumed to be horizontal and passing through the centroid of each beam-slab unit.

Based on this assumption, $I_{\text {eq }}$, shown in Eq. 8, can be simplified to $I_{x x}$. This results in a much simpler correlation, which is given as follows:

$$
\begin{equation*}
(\mathrm{M.P.})_{i}=\frac{\left(I_{x x}\right)_{i}\left(\delta_{y}\right)_{i}}{\sum_{i=1}^{m}\left(I_{x x}\right)_{i}\left(\delta_{y}\right)_{i}} \tag{13}
\end{equation*}
$$

By dividing $\left(I_{x x}\right)_{i}$ by I_{o} and $\left(\delta_{y}\right)_{i}$ by $\Sigma\left(\delta_{y}\right)_{i}$, this equation can be non-dimensionalized to

$$
\begin{equation*}
\text { (M.P.) }{ }_{i}=\frac{(\text { (F.M.I. })_{i}(\text { D.P. })_{i}}{\sum_{i=1}^{m}(\text { F.M.I. })_{i}(\text { (D.P. })_{i}} \tag{14}
\end{equation*}
$$

where I_{o} is the moment of inertia of a reference box beam with respect to its horizontal centroidal axis,
F.M.I. is the factor of moment of inertia, defined as the ratio of $\mathrm{I}_{x x} / \mathrm{I}_{\mathrm{o}}$, and D.P. is the deflection percentage of an individual beamuslab unit.

The only undefined variable in computing $I_{x x}$ is the individual slab width. Although a slab width varies appreciably when the load is on different lanes, its effect on the magnitude of $I_{x x}$ and on F.M.I. was found to be small. (See Figs. 24 and 25.)

Therefore, the center-to-center spacing of box beams is used as the individual slab width for interior beams, and edge-of-slab to the first mid-spacing as the individual slab width for exterior beams. According to this simplification, the values of the so-called "Hypothetic Factor of Moment of Inertia" for the bridges with three different sizes of box beams were calculated and presented in Table 20. In each case, the hypothetic F.M.I. were computed based on three different thicknesses of slab and four different percentages of effectiveness of parapets: 0%, $30 \%, 60 \%$, and 100%.

To study the validity of the hypothetic F.M.I., a comparison of experimental and hypothetic values was made and is presented in Table 21. The experimental F.M.I. values were based on the experimental individual slab widths.

In Table 21, it is seen that the values of hypothetic F.M.I. are nearly equal to the corresponding values of average experimental F.M.I. for exterior beams, and approximately $4-10 \%$ smaller in interior beams. Therefore, a complete set of suggested values of Factor of Moment of Inertia is presented in Table 22. For convenience, these tabulated values are also presented in Figs. 26 through 28. In these figures, the required values of F.M.I. can be read directly or by interpolation for different combinations of slab thickness and effectiveness of parapets.

The moment percentages based on the experimental F.M.I. are tabulated in Tables 2 through 18 under the title of "computed moment percentages". The influence of using suggested F.M.I. can be found by comparing these computed moment percentages with estimated moment percentages based on the following proposed method:

Step 1. Compute the deflection percentages (D.P.) for each box beam by using the cross-sectional deflections (δ_{y}), which would be obtained by direct measurements.

Step 2. Adopt a value for the percentages of effectiveness of parapets in accordance with the nature of the connection, and then determine the values of Factor of Moment of Inertia for all beams by the use of the provided charts. If the thickness is not available in the charts, the required values can be found by interpolation.

Step 3. Compute the coefficients of moment of inertia (C.M.I.) for all beams by dividing the F.M.I. of each beam by the summation of F.M.I.'s of all of the beams.

Step 4. Calculate the estimated moment percentages (E.M.P.) using the following formula.

$$
\begin{equation*}
(\text { E.M.P. })_{i}=\frac{(C . M . I .)_{i}\left(D . P_{0}\right)_{i}}{\sum_{i=1}^{m}(C . M . I .)_{i}(D . P .)_{i}} \tag{15}
\end{equation*}
$$

Step 5. Finally, determine the estimated longitudinal bending moments by multiplying the total bending moments at the section concerned by the E.M.P.'s.

5.2 Illustrated Example

An example to illustrate the proposed method is presented as follows:

The problem is to find the moment percentages at Section 1 in Bridge Model B4 when the load is on lane 1 by using the following information:

1. The cross-sectional deflections
(in 10^{-5} in.) are 489 for beam $1 ;$
379 for beam 2; 229 for beam 3; and
120 for beam 4.
2. The bridge has four 4×39 box beams, slab 8 in. in thickness, curbs, parapets, and diaphragms.

Solution:
Step 1. Deflection Percentages (D.P.)
$(D . P .)_{I}=\frac{489}{(489+379+229+120)}(100)=40.18$

Similarly

$$
\begin{aligned}
& (\text { D.P. })_{2}=31.13 \\
& (\text { D.P. })_{3}=18.82 \\
& (\text { D.P. })_{4}=9.86
\end{aligned}
$$

Step 2.
Thirty percent of parapet effectiveness can be considered as contributing to the flexural stiffness of this bridge, based on Fig. 5.

The suggested values of F.M.T. are taken from the charts in Fig. 26 。

$$
\begin{aligned}
& \text { (F.M.I.) } 1_{2,4}=3.74 \\
& \text { (F.M.I. }_{2,3}=2.75
\end{aligned}
$$

Step 3. Coefficients of Moment of Inertia:
(C.M.I.) $1.4=\frac{3.74}{(3.74+2.75)(2)}=1.12$
(C.M.I.) $2,3=\frac{2.75}{(3.74+2.75)(2)}=0.88$

Step 4. Estimated Moment Percentages from Eq. 15
$(\text { E.M.P. })_{1}=\frac{(1.12)(40.18)}{(1.12)(40.18+9.86)+(0.88)(31.14+18.82)}=44.96$

Similarly

$$
\begin{aligned}
& (\text { E.M.P. })_{2}=27.43 \\
& (\text { E.M.P. })_{3}=16.58 \\
& (\text { E.M.P. })_{4}=11.03
\end{aligned}
$$

Abstract

5.3 Comparisons of Experimental and Estimated Moment Percentages Using the proposed method, values of estimated moment percentages were calculated and compared with experimental moment pereentages for the Berwick Bridge and eight bridge models. The results are presented in Tables 23 through 31. As mentioned in Section 4.2 .1 , a 60% effectiveness of the parapets was assumed in model Al and the Berwick Bridge, and a 30% effectiveness of the parapets in models B3, B4, B7, B8, B12, B13, and B14.

Satisfactory agreement was found in all cases between the experimental and estimated moment percentages. In particular, the differences were minimal for all models when the load was on lane 3.

For the bridge models with curbs, parapets, and with or without diaphragms, the maximum difference in the comparison is within 3% of the total nesisting bending moment at Section I. In most instances, this occurred in beam 1 when the load was on lane 1. The reason is possibly due to the fact that the assumed
percentages of effectiveness of the parapets were not entirely valid when the load was on lane 1 . On the other hand, virtually identical results were obtained when the load was on lane 3. This can be explained by the fact that the neutral axes in the box beams with the load on lane 3 are almost horizontal, and thus, the assumption ($I_{e q}=I_{x x}$ or $\theta=0^{\circ}$) can be better satisfied.

For the bridges without curbs and parapets, the equivalent moments of inertia of individual beam-slab units are nearly equal. It is reasonable to assume that the $I_{e q}{ }^{\text {'s }}$ are the same in all beam-slab units. Therefore, by Eq. 12, the estimated moment pencentages can be taken as equal to the deflection percentages; and the comparison of estimated and experimental moment percentages becomes that of experimental moment percentages and deflection percentages as discussed in Section 4.2.4. For convenience, this comparison is given in Tables 32 through 36 .

The comparison for the Berwick Bridge is: shown in Table 23. The differences between the experimental and the estimated moment percentages are slightly larger than in the models. However, for practical purposes, the estimated values are still acceptable. The deflections used in the Berwick Bridge were based on the crawl-speed field tests.

5.4 Validity and Limitations of the Proposed Method

Since the proposed method was developed by using the theoretical correlation between the bending moment distribution and the crossmsectional deflections, all of the assumptions made in Sections 2.2 and 5.1 should be satisfied. It may be noted that most of these assumptions and simplifications have alneady been discussed and evaluated in Sections 4.2 and 5.1. In this section, more attention is given to the discussion of the assumptions which are not always valid, and to the limitations of this method. This discussion can be summarized as follows:

1. The linear longitudinal slab strain distribution in the transverse direction is a simplifying assumption which produces some error in the computation of the experimental moment percentages。 ${ }^{9}$
2. It was assumed in this method that the bridge is homogeneous. Actually, the modulus of elasticity for the castoinplace slab, curbs, parapets, and diaphragms is lower than that of the box beams. This again, introduces certain errors in estimating bending moments by the proposed method.
3. The neutral axes were assumed to be horizontal and passirg through the centroid of each beam-slab unit. This condition was found to exist in all model tests,
only when the load was on lane 3 .
4. This method can be used to estimate the longitudinal bending moments in box-beam bridges within the elastic range only. The transverse bending moments and inelastic structural behavior are not to be determined by this method.
5. The charts provided in Figs. 26, 27, and 28 are applicable to bridges constructed according to bridge standards similar to those of the Pennsylvania Department of Highways. ${ }^{\text {a }}$ For a bridge with different design of curb and parapet, the provided charts cannot be used. The true factors of moment of inertia should be calculated by adequate consideration of the reserve strength in curbs and parapets.

6. CONCLUSIONS

The lateral distribution of static vehicular loads in prestressed concrete box-beam bridges, within the elastic range, has been successfully estimated for eighteen different crosssections. Within the scope of this report, the following conclusions were reached:

1. In box-beam bridges without curbs and parapets, the moment percentages were found to be essentially the same as the deflection percentages under vehicular loads. Both the theoretical analysis and the test results confirmed this conclusion.
2. The test results consistently indicated full composite action between the slab and the curb sections, and some degree of composite action between curb and parapet sections. This degree of composite action is believed to be one of the primary reasons for the difference between the distributions of longitudinal bending moments and that of crosssectional deflections. Thus, the reserve strength contributed by curbs and parapets should be accounted for in the analysis and design.
3. Since a reasonable agreement was found in the comparison of the experimental moment percentages and the estimated moment percentages by
the proposed method, the lateral distribution of longitudinal bending moments may be estimated within acceptable accuracy using the proposed method for the bridges with curbs and parapets.
4. It appears that the presence of midspan and end diaphragms has little effect on the cornelation between the distributions of longitudinal bending moments and the cross-sectional deflections.
5. The plots of the ratios of moment percentages to deflection percentages against rotation percentages indicate that there is no simple relationship between the lateral distribution of bending moments and the transverse individual rotations in box-beam bridges.
6. In a box-beam bridge under vehicular loading, the moment-deflection relationship is quite similar for all beams, regardless of vehicle location. This is due to the fact that the effects on the non-proportionality between strains and deflections is greatly reduced when multiple wheel loads ane used instead of a single concentrated load.
7. The proposed method has been primarily evaluated by the test results of four-beam bridges. It is believed that further study of load distribution for three-beam and five-beam bridges might be helpful in establishing a better
understanding of the reliability of this method.
8. Every step of the proposed method can be carried out by means of a system of electronic circuits built into instrument modules. The circuits can be readily set in accordance with the bridge cross-section characteristics. It would be possible to devise a testing system in order to measure beam deflections by the use of deflectometers. The cross-sectional deflections could then be fed to a set of intereconnected instrument modules, and the moment percentages could be read dinectly in digital counters. Through this idea, a more efficient and more economical method can be used for both field and laboratory investigations.

7．ACKNOWLEDGMENTS

This report presents partial results of the project entitled＂A Structural Model Study of Load Distribution in High－ way Bridges＂，conducted at Fritz Engineering Laboratory of Le－ high University，Bethlehem，Pemsylvania。 Dr．D．A．VanHorn is director of this research project and Chairman of the Department of Civil Engineering，Dr。L。S．Beedle is Director of the Lab－ oratory．This project was sponsored by the National Science Foundation．

The writers wish to thank Mr．Felix Barda for his assistance in the testing portion of this investigation，and Miss Sharon Gubich for her graphic arts work．

Special thanks are due to Mrs．Carol Kostenbader for her patience，willingness，and ability in typing this manuscript．
8. TABLES

Table 1 Models Tested

Model No.	Number of Beams	Size of Beams	Slab Thick (in.)	Curbs*	Parapets*	Diaphragms*	File Comp. Output
Al	4	4×39	0.5	1	1	1	I23
B1	4	4×39	0.5	0	0	0	a
B2	4	4×39	0.5	0	0	1	n
B3	4	4×39	0.5	1	1	0	m
B4	4	4×39	0.5	1	1	1	e
B5	4	4×30	0.5	0	0	0	k
B6	4	4×30	0.5	0	0	1	1
B7	4	4×30	0.5	1	1	0	j
B8	4	4×30	0.5	1	1	1	i
B9	4	3×42	0.5	0	0	0	0
B10	4	3×42	0.5	0	0	1	r
Bll	4	3×42	0.5	1	1	0	p
B12	4	3×42	0.5	1	1	1	q
B13	4	4×39	0.375	1	1	1	g
B14	4	4×39	0.625	1	1	1	f
B15	42	$\begin{aligned} & -3 \times 42 \\ & -4 \times 30 \end{aligned}$	0.5	0	0	0	s
B16	7	3×24	0.5	0	0	0	t

*Code: A zero means NO and a one means YES.

BRIDGE MODEL NIMBER A 1 :.
LOAD POSITION 1 SECTION NUMBER 1
BEAM 1 BEAM 2 BEAM 3 BEAM 4

EXPERIMENTAL MOMENT PERCENTAGES

| LANE 1 | 44.57 | 27.02 | 15.43 | 12.98 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| LANE 2 | 33.32 | 26.61 | 20.33 | 19.74 |
| LANE 3 | 25.50 | 24.50 | 24.20 | 25,50 |

beAM DEFLECTION PERCEVTAGES

LANE 1	36.20	29.62	20.59	13.59	
LANE	2	29.03	29.77	23.86	17.34
LANE 3	22.74	$2 \% .26$	27.26	22.74	

RATIO OF MOMENT PER, 1 DEFLECTION PER,

LANE 1	1.23	0.91	0.75	0.96
LANE 2	1.15	0.89	0.85	1.14
LANE	3	1.12	0.90	0.90
1.12				

beam rotation percentages

LANE	-15.07	-33.42	-26.30	-25.21
LANE 2	14.15	-13.21	-38.68	-33.96
LANE 3	29.44	20.56	-20.56	-29.44

COMPUTED MOMENT PERCEVTAGES

	COEFFICIENTS OF MOMENT OF IVERTIA				
LANE	1	1.20	0.84	0.57	1.09
LANE 2	1.16	0.81	0.85	1.17	
LANE	3	1.13	0.87	0.57	1.13

Table 3 Summary of Test Results (Model B1)
BRIDGE MODEL NUMBER B1:
LOAD POSITION 1 SECTION NUMBER 1
BEAM 1 BEAM 2 BEAY 3 BEAM 4

EXPERIMENTAL MOMENT PERCENTAGES

LANE 1	44,80	32,45	15,11	$7,64$.
LANE 2	30,20	34,81	22,32	12,67
LANE 3	19,32	30,68	30,68	19,32

beam deflection percevtages

LANE 1	44,78	30,42	16,87	7,93	
LANE 2	30,92	32,99	22,87	13,22	
LANE	3	20,78	29,22	29,22	20,78

RATIO OF MOMENT PER, I DEFLECTION PER,

LANE 1	1,00	1,07	0,90	0,96
LANE 2	0,98	1,06	0,98	0,96
LANE	3	0,93	1,05	1,05

beam rotation percent ages

LANE 1	15,54	39.62	$-29,42$	$-15,42$
LANE	29.72	10,74	$-41,55$	-27.99
LANE	3	26,03	23.97	-23.97

computed moment percevtages

LANE	1	49.48	26.59	10.30		7.43
LANE	2	30,22	33,85	23,94		12.00
LANE	3	20,33	29,67	29,57		20.33
		MOMENT 0	INERTIA	$10=$	2,106	
LANE	1	3,06	2,42	2.71		2,59
LANE	2	2,72	2,86	2,91		2.53
LANE	3	2.67	2,77	2,77		2.67

COEFFICIENTS OF MOMENT OF INERTIA

LANE 1	1,13	0,90	1,00	0,96
LANE	2	0,99	1,04	1,06
LANE 3	0,98	1,02	1,02	0,92

$$
\text { BRIDGE MODEL NUMBER B } 2 \text {. }
$$

```
LOAD POSITION 1 SECTION NUMBER 1
```

BEAM 1 BEAM 2 BEAM 3 BEAM 4

EXPERIMENTAL MOMENT PERCENTAGES

LANE	1	42,65	29,76	16,52	11,07
LANE	31,50	31,09	21,31	15,90	
LANE	3	22,71	27,29	27,29	22,71

beam deflection percevtages

LANE	1	40,90	30,74	18,68	9,68
LANE	2	30,98	30,78	22,78	15,46
LANE	3	22,55	27,45	27,45	22,55

RAT 10. OF MOMENT PER, I DEFLECTION PER,

LANE	1	1,04	0.97	0.88
LANE	2	1,02	1,01	0.94
LANE	3	1,01	0.99	0.99
		1,03		

BEAM ROTATION PERCENTIGES

LANE	1	17,45	$-35,98$	$-29,12$
LANE	2	5,45	$-20,05$	$-48,76$
LANE 3	24,02	25,98	$-25,98$	$-25,74$
		$-24,02$		

COMPUTED MOMENT PERCENTAGES

COEFFICIENTS OF MOMENT OF IVERTIA

LANE	1	1,09	0,95	0,94
LANE	2	0,99	1,01	1,00
LANE	3	1,00	1,00	1,00
1,00				
		1,00		

Table 5. Summary of Test Results (Model B3)

$$
\text { BRIDGE MODEL NUMBER B } 3
$$

LOAD POSITION 1 SECTION NUMEER 1
BEAM 1 BEAM 2 BEAM 3 BEAM 4

EXPERIMENTAL MOMENT PERCENTAGES
$\left.\begin{array}{llllr}\text { LANE } & 1 & 49,02 & 29,88 & 13,33 \\ \text { LANE } & 34,44 & 32,34 & 19,91 & 1,79 \\ \text { LANE } & 3 & 22,71 & 27,79 & 27,79\end{array}\right] 22,21$

RATIO OF MOMENT PER, I DEFLECTION PER,

LANE 1	1,16	0,90	0,76	1,16	
LANE	2	1,16	0,93	0,85	1,11
LANE	3	1,17	0,91	0,91	1,14

beAM ROTATION PERCENTAGES

LANE	1	98.50
LANE	2	25.69
LANE	3	28.48

39,38	$-33,71$
$-10,26$	$-38,80$
21,52	$-21,52$

28,4
$21,52-21,52$
$-28,48$
COMPUTED MOMENT PERCEVTAGES

LANE	1	47.93	29.05	15.65		7.36
LANE	2	33,74	31.09	21.95		13.22
LANE	3	21,60	28,40	28.40		21,60
		MOMENT OF	INERTIA	$10=$	2.106	IN * ${ }^{\text {¢ }} 3$
LANE	1	3,81	2,94	3,01		3,71
LANE	2	3,77	2,99	3.11		3.66
LANE	3	3,67	3,08	3,08		3,67

\left.| | COEFFICIENTS OF MOMENT OF INERTIA | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |$\right]$

Table 6 Summary of Test Results (Model B4)

LANE
LANE
LANE

> 47,01
> 35,13
> 24,82

28,10
29,30
25,18
14.97

9,92
25.18

19,31
25,18
16,26

BEAM DEFLECTION PERCENTAGES

LANE 1	10,18	31,14	18,82	9,86
LANE 2	30,48	31,70	22,98	14,83
LANE	3	21,46	28,54	28,74

RAT 10 OF MOMENT PER,, DEFLECTION PER,

LANE	1	1,17	0,90	0,80	1,01
LANE	2	1,15	0,92	0,88	1,10
LANE	3	1,16	0,88	0,88	1,16

8EAM ROTATION PERCENTAGES

LANE	1	14.52	$-32,10$	-36.29	$-17,10$
LANE	2	12.91	$-11,14$	$-53,92$	$-22,03$
LANE	3	17.96	32,04	$-32,04$	$-17,96$

COMPUTED MOMENT PFRCEVTAGES

LANE	1	45,52	27.40	16:18		10.90
LANE	2	34,72	27.47	20.78		16,83
LANE	3	24.94	25.06	25.06		24.94
		MOMENT OF INERTIA		$10=$	2.106	! v* 3
LANE	1	3.85	2.99	2.73		3.76
LANE	2	3,76	2,86	3.02		3.75
LANE	3	3,80	2,87	2,87		3,80

COEFFICIENTS OF MOMENT OF INERTIA

LANE	1	1,14	0,88	0,86	1,11
LANE	2	1,12	0,85	0,90	1,12
LANE	3	1,14	0,86	0,86	1,14

BRIDGE MODEL NUMBER B 5
LOAD POSITION 1 SECTION NUMBER 1
BEAM 1 BEAM 2 BEAM 3 BEAM

EXPERIMENTAL MOMENT PERCENTAGES

LANE	1	41,03	30,85	16.86	11.26
LANE	2	30,20	32.56	22.53	14.71
LANE	3	21,10	28,90	28.90	21.10
BEAM DEFLECTION PERCEVTAGES					
LANE	1	40,71	31.19	18,45	9.65
LANE	2	30.70	31.37	23.21	14.72
LANE	3	21.68	28.32	28.32	21.68

RATIO OF MOMENT PER, 1 DEFLECTION PER,

LANE 1	1,01	0,99	0.91	1,17
LANE	2	0.98	1,04	0.97
LANE 3	0,97	1,02	1,02	0.00
	0,97			

LANE	1
LANE	2
LANE	3

$$
-19.53
$$

$-35,28$
-28.50
$-16,69$
beam rotation percentages

LANE 3

11.92	-15.99	-41.19	30.89
28.42	21.58	-21.58	28.42

COMPUTED MOMENT PERCEVTAGES

LANE	1	41.00	31.14	18.11		9.75
LANE	2	29.91	32,09	24,42		13.58
LANE	3	20,82	29,18	29.18		20.82
		MOMENT	INERTIA	$10=$	1.123	
LANE	1	3,07	3,04	2,99		3.08
LANE	$?$	2,99	3. 14	3.23		2.83
LANE	3	2,93	3,14	3.14		2.93

COEFFICIENTS OF MOMENT OF IVERTIA

LANE 1	1,01	1,00	0.98	1.01
LANE 2	0.98	1,03	1.06	0.93
LANE 3	0.96	1.04	1.04	0.96

beam rotation percentages

LANE	1	-20.73	-30.24	-27.32	-21.71
LANE	2	-1.91	-19.41	-44.71	-33.97
LANE	3	22.86	27.14	-27.14	-22.86

LANE	1	38,80	30.17	19.34
LANE	2	30.14	29.80	23.56
LANE	3	22.74	27.26	27.26
		22.74		

MOMENT OF INERTIA $10=18123$ INoe3

LANE	1	3,09	3,08	2.97
LANE	2	3,03	3,07	3,06
LANE	3	3,02	3,05	3,05

LANE 1	1,01	1,01	0.97	1.01
LANE 2	1,00	1,01	1,01	0.99
LANE 3	0,99	1,01	1.01	0.99

Table 9 Summary of Test Results (Model B7)
BRIDGE MODEL NUMBER B 7
LOAD POSITION 1 SECTION NUMBER 1
BEAM 1 BEAM 2 BEAM $3 \quad$ EEAM 4
EXPERIMENTAL MOMENT PERCENTAGES

LANE 1	47,90	27,60	14,29	10,21
LANE 2	34,86	29,35	19,96	15,82
LANE 3	23,72	26,28	26,28	23,72
		BEAM DEFLECTION PERCEVTAGES		

LANE
LANE
LANE

40.19	31,85	18,78	9.18
29.59	32,94	23,89	13.57
20.40	29,60	29,60	20.40

RATIO OF MOMENT PER. , DEFLECTION PER,

LANE 1	1,19	0.87	0.76	1.11
LANE	2	1,18	0.89	0.84
LANE 3	1,16	0,89	0.89	1,17

geam rotation percentages

LANE	1	-11.95	-36.55	-31.18	-20.32
LANE 2	23.31	-7.52	-37.07	-32.10	
LANE	3	29.13	20.87	-20.87	-29.13

computed moment percevtages

LANE	1	47.48	25.56	16.37		10.58
LANE	2	35,52	27.0n	21.36		16.07
LANE	3	24.02	25,98	25.98		24.02
		MOMENT OF	INERTIA	105	1,123	1N* ${ }^{\text {a }}$
LANE	1	4.65	3.16	3,43		4,54
LANE	2	4.61	3,16	3,44		4,55
LANE	3	4.55	3.39	3.39		4.55
		COEFFICIENTS OF MOMENT OF INERTIA				
LANE	1	1.18	0,80	0.87		1.15
LANE	2	1,17	0.80	0.87		1,15
LANE	3	1.15	0.85	0.85		1.15

Table 10 Summary of Test Results (Model B8)
8RIDGE MODEL NUMBER B 8
LOAD POSITION 1 SECTION NUMEER 1
BEAM 1 BEAM 2 BEAM 3 BEAM 4

EXPERIMENTAL MOMENT PERCENTAGES

LANE	1	66,77	25.92	14.80	12,51
LANE	2	35.04	27.55	19,11	18,30
LANE	3	26.18	23,82	23,82	26.18
	BEAM DEFLECTION PERCEVTAGES				
LANE	1	38,08	30.53	20.21	11,18
LANE	2	29.67	30.79	23,66	15.88
LANE	3	22.12	27,88	27.08	22,12

RATIO OF MOMENT PER, DEFLECTION PER,

LANE	1	1.23	0.85	0.73	1.12
LANE	2	1.18	0.89	0.81	1.15
LANE	3	1.18	0.85	0.85	1.18

beam rotation percentages

LANE	1	-16.38	-31.99	-28.16	-23.26
LANE	2	10.93	-13.58	-41.80	-33.69
LANE	3	24.73	25.27	-25.27	-24.73

COMPUTED MOMENT PERCEVTAGES

LANE	1
LANE	2
LANE	3

44.98
35.02
26.43
24.67
17.39
12.96

25,67
20.96
18.35
23.57

23,57
26.43

MOMENT OF INERTIA $10=1,123$ IN. 3
$\begin{array}{ll}\text { LANE } & 1 \\ \text { LANE } 2 & 4,64 \\ \text { LANE } & 3\end{array}$
3.18
$3.38 \quad 9.56$
$3.25 \quad 3,45 \quad 4,50$
$3.26 \quad 3.26 \quad 4.61$
COEFFICIENTS OF MOMENT OF INERTIA

LANE 1	1,18	0.81	0.86	1.16
LANE 2	1,16	0.82	0.87	1.14
LANE	3	1.17	0.83	0.83
1.17				

BRIDGE MODEL NUMBER BLIO

LOAD POSITION 1 SECTION NUMBER

BEAM 1 BEAM 2 BEAM 3 BEAM 4

EXPERIMENTAL MOMENT PERCENTAGES

LANE	1	46,25	31.10	14193	7.72
LANE	2	33,06	32,43	20,22	14,28
LANE	3	22,03	27,97	27197	22,03
beam deflection percevtages					
LANE	1	44.64	31,99	17.18	6.18
LANE	2	32,61	31.48	22.04	13.87
LANE	3	22,37	27.63	27.63	22,37

RATIO OF MOMENT PER, 1 DEFLECTION PER,

LANE	1	1,04	0.97	0.87	1.25
LANE	2	1,01	1.03	0.92	1,03
LANE	3	0.98	1.01	1.01	0.98

beam rotation percentages

LANE 1	-22.66	-30.12	-27.44	19.78	
LANE	2	0.00	20.22	-54.35	-25.43
LANE 3	14.97	35.03	-35.03	-14.97	

computed moment percevtages

COEFFICIENTS OF, MOMENT OF INERTIA					
LANE	1	1,01	1,01	0.92	1,06
LANE 2	0,99	1,04	0.97	1,00	
LANE	3	0,98	1,02	1,02	0.98

BRIDGE MODEL NUMBER 811
LOAD POSITION 1 SECTION NUMBER 1
BEAM 1 BEAM 2 BEAM 3 BEAM 4

EXPERIMENTAL MOMENT PERCENTAGES

LANE 1.	52,81	30,37	12,18	4,64
LANE 2	34,09	34,58	20,58	10,75
LANE	3	19,72	30,28	30,28
		BEAM DEFLECTION PERCENTAGES	19,72	
		45,12	33,61	16,18
LANE	1	30,00	35,33	24,26

RATIO OF MOMENT PER, , DEFLECTION PER,

LANE	1	1,17	0.90	0.75
LANE	2	1,14	0.98	0.91
LANE 3	1.08	0.95	0.95	1.03
		1.08		

BEAM ROTATION PERCENTAGES

LANE 1	10,50	-37.27	$-33,20$	019,03
LANE 2	24,96	-7.62	$-41,04$	$-26,38$
LANE 3	26,13	23,87	$-23,87$	026,13

computed moment percevtages

LANE	1	52,61		27,83	13,75		5,81
LANE	2	34,32		31,69	22.48		11,51
LANE	3	20,39		29.61	29,61		20.39
		MOMENT	OF	INERTIA	$10=$	2.057	1 * $* 3 ~_{\text {\% }}$
LANE	1	4,05		2,87	2,95		3,96
LANE	2	3.98		3,12	3.22		3,85
LANE	3	3,88		3,23	3,23		3,88

COEFFICIENTS OF MOMENT OF INERTIA

LANE	1	1,17	0.83	0.85
LANE	2	1.12	0.88	0.91
LANE	3	1.09	0.91	0.91

LOAD POSITION 1 SECTION NUMBER 1
BEAM 1 BEAM 2 BEAM 3 BEAM A

EXPERIMENTAL MOMENT PERCENTAGES

| LANE 1 | 50.80 | 28,76 | 13.18 | 7.26 |
| :--- | :--- | :--- | :--- | :--- | ---: |
| LANE 2 | 36,70 | 30.43 | 18.18 | 14.69 |
| LANE 3 | 24.32 | 25.68 | 25.68 | 24.32 |

BEAM DEFLECTION PERCENTAGES

| LANE 1 | 43.45 | 32.40 | 17.01 | 7.14 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| LANE 2 | 31.59 | 32.67 | 22.03 | 13.72 |
| LANE 3 | 21.48 | 28.52 | 28.52 | 21.48 |

RATIO OF MOMENT PER, 1 DEFLECTION PER,

LANE	1	1,17	0.89	0.77
LANE	2	1,16	0,93	1,02
LANE	3	1,13	0,90	0.83
1,07				
		0.90	1,13	

beam rotation percentages

LANE 1	18.02	-32.98	-29.37	-19.63
LANE 2	8.90	14.08	-57.76	-19.25
LANE 3	17.84	32.16	-32.16	17.84

computed moment percevtages

Lane	1	50,67		27.25	13.76		8.31
LANE	2	36.07		29,28	19.28		15.36
LaNE	3	24,24		25,76	25.76		24,24
		MOMENT	Of	INERTIA	$10=$	2,057	IN* ${ }^{\text {c }}$
LANE	1	4.01		2.89	2,78		4,00
LANE	2	3,99		3.13	3.06		3.91
LANE	3	3.92		3,14	3.14		3.92

COEFFICIENTS OF MOMENT OF IVERTIA

LANE	1	1,17	0.85	0.81
LANE	2	1,13	0.89	0.87
LANE 3	1.11	0.89	0.89	1.12

Table 15 Summary of Test Results (Model B13)

BRIDGE MODEL NUMBER BI3
LOAD POSITION 1 SECTION NUMBER 1
BEAM 1 BEAM 2 BEAM 3 BEAM 4

EXPERIMENTAL MOMENT PERCENTAGES

LANE 1	49,16	28,46	13,80	8,58
LANE 2	34,58	31,15	19,38	14,89
LANE	3	23,94	26,06	26,06

LANE 1	11.58	-37.95	-34.75	-15.71	
LANE	2	19.08	15.35	-44.96	-20.61
LANE	3	17.14	32.86	-32.86	017.14

COMPUTED MOMENT PERCEVTAGES

LANE	1	49.67	26.72	15.98		7.63
LANE	2	34,36	28.75	20.97		15.92
LANE	3	24.10	25.90	25.90		24.10
		MOM	NERTIA	105	2.100	IN* ${ }^{\text {d }}$

LANE	1	3,52	2,53	2.71
LANE	2,	3,43	2,62	2.75
LANE 3	3,38	2,61	2.61	3,22
		3,38		

LANE	1	1,17	0,84	0.91
LANE	2	1,13	0,87	0,91
LANE	3	1,13	0.87	0.87

BRIDGE MODEL NUMBER B15

LOAD POSITION 1 SECTION NUMBER 1
GEAM 1 BEAM 2 BEAM 3 BEAM 4

EXPERIMENTAL MOMENT PERCENTAGES

| LANE 1 | 44,95 | 32,16 | 14,71 | 8,16 |
| :--- | :--- | :--- | :--- | ---: | :--- |
| LANE 2 | 29,67 | 34,98 | 23,26 | 12,10 |
| LANE 3 | 18,70 | 31,30 | 31,30 | 18,70 |

| LANE 1 | 43,57 | 32,31 | 17,37 | 6,74 |
| :---: | :---: | :---: | :---: | :---: | ---: |
| LANE 2 | 30,77 | 33,48 | 23,50 | 12,25 |
| LANE 3 | 19.97 | 30,03 | 30,03 | 19,97 |
| | | RATIO OF MOMENT PER, | DEFLECTION PER, | |

LANE 1	1.03	1.00	0.85	1.21
LANE	2	0.96	1.04	0.99
LANE 3	0.94	1.04	1.04	0.99

beam rotation percentages

LANE	1	$-15,71$	-37.40	-28.14	-18.76
LANE	2	18.95	10.54	-41.68	-28.83
LANE	3	26,16	23.84	-23.84	-26.16

computed moment percevtages

LANE	1	1.01	0.97	0.92
LANE	2	0.97	1.02	1.04
LANE	3	0.97	1.03	1.03

Table 18 Summary of Test Results (Model Bl6)

Table 19 Distances (in inches) From the Top Fiber of the Beam to the Neutral Axis in the Beams At Section 1, Bridge Model Al

Load on Lane	East Face	West Face	East Face	West Face
1	0.1931	0.1134	0.4102	0.2095
2	0.2680	0.3000	0.4384	0.3539
3	0.1823	0.4517	0.3415	0.2842
4	0.0613	0.4789	0.2765	0.4297
5	0.3745	0.5841	0.4039	0.6517

At Section 1, Bridge Model Bl

Load on Lane	East Face	West Face	East Face	Weast Face
I	0.5279	0.3103	0.6395	0.2786
2	0.5460	0.4231	0.5224	0.3547
3	0.4670	0.5333	0.4210	0.4917
4	0.3097	0.8347	0.1725	0.6353
5	0.1348	0.8565	0.2854	0.8509

Table 20 Hypothetic Factors of Moment of Inertia (F.M.I.)

	Slab Thickness (in.)	Hypothetic F.M.I.			$I_{0} * *\left(i n^{4}\right)$
$\begin{gathered} \text { Size } \\ \text { (Prototype) } \end{gathered}$		P*	Exterior Beam Use	Interior Beam Use	
4\times39	6	$\begin{array}{r} 0 \\ 30 \\ 60 \\ 100 \end{array}$	$\begin{aligned} & 2.99 \\ & 3.38 \\ & 3.74 \\ & 4.18 \end{aligned}$	2.39	2.106
	8	$\begin{array}{r} 0 \\ 30 \\ 60 \\ 100 \\ \hline \end{array}$	$\begin{aligned} & 3.34 \\ & 3.74 \\ & 4.11 \\ & 4.56 \end{aligned}$	2.75	
	10	$\begin{array}{r} 0 \\ 30 \\ 60 \\ 100 \end{array}$	$\begin{aligned} & 3.70 \\ & 4.12 \\ & 4.50 \\ & 4.97 \end{aligned}$	3.11	
$\begin{gathered} 4 \\ \times \\ 39 \end{gathered}$	6	$\begin{array}{r} 0 \\ 30 \\ 60 \\ 100 \end{array}$	$\begin{aligned} & 3.41 \\ & 4.01 \\ & 4.57 \\ & 5.23 \end{aligned}$	2.61	1.123
	8	$\begin{array}{r} 0 \\ 30 \\ 60 \\ 100 \\ \hline \end{array}$	$\begin{aligned} & 3.88 \\ & 4.50 \\ & 5.08 \\ & 5.78 \end{aligned}$	3.06	
	10	$\begin{array}{r} 0 \\ 30 \\ 60 \\ 100 \end{array}$	$\begin{aligned} & 4.38 \\ & 5.03 \\ & 5.64 \\ & 6.38 \end{aligned}$	3.52	
$\begin{gathered} 4 \\ \times \\ 39 \end{gathered}$	6	$\begin{array}{r} 0 \\ 30 \\ 60 \\ 100 \end{array}$	$\begin{aligned} & 3.12 \\ & 3.52 \\ & 3.89 \\ & 4.33 \end{aligned}$	2.51	2.052
	8	$\begin{array}{r} 0 \\ 30 \\ 60 \\ 100 \end{array}$	$\begin{aligned} & 3.48 \\ & 3.88 \\ & 4.26 \\ & 4.72 \end{aligned}$	2.88	
	10	$\begin{array}{r} 0 \\ 30 \\ 60 \\ 100 \end{array}$	$\begin{aligned} & 3.85 \\ & 4.26 \\ & 4.65 \\ & 5.13 \end{aligned}$	3.24	

Note: $\begin{array}{rl}* & \mathrm{P} \text { - Percentages of Effectiveness of Parapets } \\ * * \mathrm{I}_{\mathrm{o}} \text { - Base Moment of Inertia of Box Beam }\end{array}$

Table 21 Comparison of Experimental and Hypothetic Factors of Moment of Inertia at Section 1

	$\begin{gathered} \text { (1) } \\ \text { Brg. } \\ \text { No. } \end{gathered}$	(2)	(3)					(4)	(5)	(6)
		Beam No.	Lane 1	Exper Lane 2	$\begin{gathered} \text { mental } 1 \\ \text { Lane } 3 \end{gathered}$	M.I. Lane 4	Lane 5	Average F.M.I.	Hypoth. F.M.I.	Δ^{*} (\%)
$\underset{i}{1}$	A-1	$\frac{1}{2}$	$\begin{aligned} & 4.20 \\ & 2.96 \end{aligned}$	$\begin{aligned} & 4.07 \\ & 2.83 \end{aligned}$	$\begin{aligned} & 4.01 \\ & 3.08 \end{aligned}$	$\begin{aligned} & 4.10 \\ & 2.99 \end{aligned}$	$\begin{aligned} & 3.83 \\ & 3.05 \end{aligned}$	$\begin{aligned} & 4.04 \\ & 2.98 \end{aligned}$	$\begin{aligned} & 4.11 \\ & 2.75 \end{aligned}$	-1.71 +7.72
	B-4	$\frac{1}{2}$	$\begin{aligned} & 3.84 \\ & 2.99 \end{aligned}$	$\begin{aligned} & 3.74 \\ & 2.86 \end{aligned}$	$\begin{aligned} & 3.78 \\ & 2.87 \end{aligned}$	$\begin{aligned} & 3.73 \\ & 3.02 \end{aligned}$	$\begin{aligned} & 3.74 \\ & 2.93 \end{aligned}$	$\begin{aligned} & 3.76 \\ & 2.93 \end{aligned}$	$\begin{aligned} & 3.74 \\ & 2.75 \end{aligned}$	$\begin{aligned} & +0.54 \\ & +6.56 \end{aligned}$
	B-13	1	$\begin{aligned} & 3.50 \\ & 2.53 \end{aligned}$	$\begin{aligned} & 3.41 \\ & 2.62 \end{aligned}$	$\begin{aligned} & 3.36 \\ & 2.61 \end{aligned}$	$\begin{aligned} & 3.26 \\ & 2.75 \end{aligned}$	$\begin{aligned} & 3.20 \\ & 2.71 \end{aligned}$	$\begin{aligned} & 3.35 \\ & 2.64 \end{aligned}$	$\begin{aligned} & 3.38 \\ & 2.39 \end{aligned}$	$\begin{array}{r} -0.89 \\ +10.05 \end{array}$
	B-14	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 4.24 \\ & 3.22 \end{aligned}$	$\begin{aligned} & 4.16 \\ & 3.40 \end{aligned}$	$\begin{aligned} & 4.06 \\ & 3.40 \end{aligned}$	$\begin{aligned} & 3.98 \\ & 3.44 \end{aligned}$	$\begin{aligned} & 3.95 \\ & 3.43 \end{aligned}$	$\begin{aligned} & 4.08 \\ & 3.38 \end{aligned}$	$\begin{aligned} & 4.12 \\ & 3.11 \end{aligned}$	$\begin{aligned} & -0.97 \\ & +8.69 \end{aligned}$
	B-8	$\frac{1}{2}$	$\begin{aligned} & 4.61 \\ & 3.18 \end{aligned}$	$\begin{aligned} & 4.57 \\ & 3.25 \end{aligned}$	$\begin{aligned} & 4.57 \\ & 3.26 \end{aligned}$	$\begin{aligned} & 4.47 \\ & 3.45 \end{aligned}$	$\begin{aligned} & 4.53 \\ & 3.38 \end{aligned}$	$\begin{aligned} & 4.55 \\ & 3.30 \end{aligned}$	$\begin{aligned} & 4.50 \\ & 3.06 \end{aligned}$	$\begin{aligned} & +1.11 \\ & +7.84 \end{aligned}$
	B-12	1	$\begin{aligned} & 3.99 \\ & 2.89 \end{aligned}$	$\begin{aligned} & 3.97 \\ & 3.13 \end{aligned}$	$\begin{aligned} & 3.90 \\ & 3.14 \end{aligned}$	$\begin{aligned} & 3.89 \\ & 3.06 \end{aligned}$	$\begin{aligned} & 3.98 \\ & 2.78 \end{aligned}$	$\begin{aligned} & 3.95 \\ & 3.00 \end{aligned}$	$\begin{aligned} & 3.88 \\ & 2.88 \end{aligned}$	$\begin{aligned} & +1.80 \\ & +3.82 \end{aligned}$
	Note :	Diff	ce	$\text { 4) } \frac{-(5)}{(5)}$						

Table 22 Suggested Factors of Moment of Inertia (F.M.I.)

$\begin{gathered} \text { Beam } \\ \text { Size } \\ \text { (Prototype) } \end{gathered}$	$\begin{gathered} \text { Slab } \\ \text { Thickness } \\ \text { (in.) } \end{gathered}$	Suggested F.M.I.		
		P*	Exterior Beam Use	Interior Beam Use
$\begin{gathered} 4 \\ \times \\ 39 \end{gathered}$	6	$\begin{array}{r} 0 \\ 50 \\ 100 \\ \hline \end{array}$	$\begin{aligned} & 2.99 \\ & 3.59 \\ & 4.18 \end{aligned}$	2.57
	8	$\begin{array}{r} 0 \\ 50 \\ 100 \end{array}$	$\begin{aligned} & 3.34 \\ & 3.95 \\ & 4.56 \end{aligned}$	2.96
	10	$\begin{array}{r} 0 \\ 50 \\ 100 \end{array}$	$\begin{aligned} & 3.70 \\ & 4.33 \\ & 4.97 \\ & \hline \end{aligned}$	3.34
$\begin{gathered} 4 \\ \times \\ 39 \end{gathered}$	6	$\begin{array}{r} 0 \\ 50 \\ 100 \end{array}$	$\begin{aligned} & 3.41 \\ & 4.32 \\ & 5.23 \end{aligned}$	2.80
	8	$\begin{array}{r} 0 \\ 50 \\ 100 \\ \hline \end{array}$	$\begin{aligned} & 3.88 \\ & 4.83 \\ & 5.78 \\ & \hline \end{aligned}$	3.29
	10	$\begin{array}{r} 0 \\ 50 \\ 100 \\ \hline \end{array}$	$\begin{aligned} & 4.38 \\ & 5.38 \\ & 6.38 \\ & \hline \end{aligned}$	3.78
$\begin{gathered} 4 \\ x \\ 39 \end{gathered}$	6	$\begin{array}{r} 0 \\ 50 \\ 100 \end{array}$	$\begin{aligned} & 3.12 \\ & 3.73 \\ & 4.33 \end{aligned}$	2.70
	8	$\begin{array}{r} 0 \\ 50 \\ 100 \\ \hline \end{array}$	$\begin{aligned} & 3.48 \\ & 4.10 \\ & 4.72 \\ & \hline \end{aligned}$	3.10
	10	$\begin{array}{r} 0 \\ 50 \\ 100 \end{array}$	$\begin{aligned} & 3.85 \\ & 4.49 \\ & 5.13 \end{aligned}$	3.48

Note: * P-Percentages of Effectiveness of Parapets

Table 23 Comparison of Experimental and Estimated Moment Percentages at Section 1, Northbound, Berwick Bridge

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Test Bridge	Load onLane	Beam No.	Experimental Moment Percentages	Deflection Percentages	Coeff. of Moment of Inertia	Estimated Moment Percentages	Difference $(7)-(4)$
$\underset{1}{\infty}$		1	1	43.82	34.99	1.15	40.78	-3.04
			2	30.95	31.03	0.85	26.50	-4.45
			3	15.02	22.02	0.85	18.80	+3.78
			4	10.21	11.95	1.15	13.93	+3.72
	Berwick	2	1	33.00	28.47	1.15	33.69	+0.69
	Berwick		2	31.06	33.39	0.85	28.95	-2.11
	Bridge		3	20.85	24.59	0.85	21.32	+0.47
	(Prototype)		4	15.09	13.55	1.15	16.03	+0.94
		3	1	21.12	19.91	1.15	23.75	+2.63
			2	29.00	29.48	0.85	25.76	-2.76
			3	28.88	30.92	0.85	27.02	-1.86
			4	21.12	19.68	1.15	23.47	+2.35

Table 24 Comparison of Experimental and Estimated Moment Percentages at Section 1, Load on Position 1

(1) Bridge Model No.	(2) Load on Lane	(3) Beam No.	(4) Experimental Moment Percentages	(6) Deflection Percentages	(7) Coeff. of Moment of Inertia	(8) Estimated Moment Percentages	Difference (7)
(4)							

Table 25 Comparison of Experimental and Estimated Moment Percentages at Section 1, Load on Position 1

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Bridge Model No.	Load on Lane	$\begin{gathered} \text { Beam } \\ \text { No. } \end{gathered}$	Experimental Moment Percentages	Deflection Percentages	Coeff. of Moment of Inertia	Estimated Moment Percentages	Difference $(7)-(4)$
$\underset{\substack{1 \\ 1 \\ \hline}}{ }$			1	47.01	40.18	1.12	44.96	-2.05
		1	2	28.10	31.14	0.88	27.43	-0.67
		1	3	14.97	18.82	0.88	16.58	+1.61
			4	9.92	9.86	1.12	11.03	+1.11
	B-4		1	35.13	30.48	1.12	34.49	-0.64
			2	29.30	31.70	0.88	28.24	-1.06
		2	3	19.31	22.98	0.88	20.48	+1.17
			4	16.26	14.83	1.12	16.79	+0.53
			1	24.82	21.46	1.12	24.43	-0.39
		3	2	25.18	28.54	0.88	25.57	+0.39
		3	3	25.18	28.54	0.88	25.57	+0.39
			4	24.82	21.46	1.12	24.43	-0.39

Table 26 Comparison of Experimental and Estimated Moment Percentages at Section 1, Load on Position 1

| (1)
 Bridge
 Model
 No. | (2)
 Load
 on
 Lane | (3)
 Beam
 No. | (4)
 Experimental
 Moment | (5)
 Percentages | (6)
 Deflection | (7)
 Coeff. of
 Moment | Estimated
 Moment
 of Inertia
 Percentages |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Difference |
| :---: |
| (7) (4) |

Table 27 Comparison of Experimental and Estimated Moment Percentages at Section 1, Load on Position 1

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Bridge Model No.	Load on Lane	Beam No.	Experimental Moment Percentages	Deflection Percentages	Coeff. of Moment of Inertia	Estimated Moment Percentages	Difference $(7)-(4)$
$\underset{\sim}{\sim}$			1	50.80	43.45	1.12	48.62	-2.18
			2	28.76	32.40	0.88	28.45	-0.31
		1	3	13.18	17.01	0.88	14.93	+1.75
			4	7.26	7.14	1.12	7.99	+0.64
	B-12		1	36.70	31.59	1.12	35.80	-0.90
			2	30.43	32.67	0.88	29.06	-1.37
		2	3	18.18	22.03	0.88	19.59	+1.41
			4	14.69	13.72	1.12	15.55	+0.86
			1	24.32	21.48	1.12	24.48	+0.16
			2	25.68	28.52	0.88	25.52	-0.16
		3	3	25.68	28.52	0.88	25.52	-0.16
			4	24.32	21.48	1.12	24.48	+0.16

Table 28 Comparison of Experimental and Estimated Moment Percentages at Section 1, Load on Position 1

| (1)
 Bridge
 Model
 No. | (2)
 Load
 on
 Lane | (3)
 Beam
 No. | (4)
 Experimental
 Moment | (5)
 Percentages | Deflection
 Percentages | (6)
 Coeff. of
 Moment
 of Inertia | (7)
 Estimated
 Moment
 Percentages |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | (8) |
| :---: | | Difference |
| :---: |
| (7) (4) |

Table 29 Comparison of Experimental and Estimated Moment Percentages at Section 1, Load on Position 1

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Bridge Model No.	Load on Lane	Beam No.	Experimental Moment Percentages	Deflection Percentages	Coeff. of Moment of Inertia	Estimated Moment Percentages	Difference $(7)-(4)$
$\underset{i}{+}$			1	47.35	40.84	1.10	44.91	-2.44
		1	2	27.97	31.11	0.90	28.00	+0.03
		1	3	14.65	18.89	0.90	17.01	+2.36
			4	10.03	9.16	1.10	10.07	+0.04
	B-14		1	35.59	30.87	1.10	34.22	-1.37
			2	28.89	30.78	0.90	27.93	-0.96
		2.	3	19.38	23.20	0.90	21.05	+1.67
			4	16.14	15.15	1.10	16.80	+0.64
			1.	24.52	22.05	1.10	24.53	+0.01
		3	2	25.48	27.95	0.90	25.47	-0.01
		3	3	25.48	27.95	0.90	25.47	-0.01
			4	24.52	22.05	1.10	24.53	+0.01

Table 30 Comparison of Experimental and Estimated Moment Percentages at Section 1, Load on Position 1

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Bridge Model No.	Load on Lane	Beam No.	Experimental Moment Percentages	Deflection Percentages	Coeff. of Moment of Inertia	Estimated Moment Percentages	Difference $\text { (7) }-(4)$
${\underset{i}{1}}_{\substack{1 \\ \hline}}$	B-3	1	1	49.02	42.43	1.15	48.90	-0.12
			2	29.88	33.33	0.85	28.40	-1. 44
			3	13.33	17.54	0.85	14.96	1.63
			4	7.77	6.70	1.15	7.74	-0.03
		2	1	34.44	29.81	1.15	35.15	0.71
			2	32.34	34.65	0.85	30.20	-2.14
			3	19.91	23.51	0.85	20.45	0.54
			4	13.31	12.04	1.15	14.20	0.89
		3	1	22.21	19.46	1.15	23.18	0.97
			2	27.79	30.34	0.85	26.82	-0.97
			3	27.79	30.54	0.85	26.82	-0.97
			4	22.21	19.46	1.15	23.18	0.97

Table 31 Comparison of Experimental and Estimated Moment Percentages at Section 1, Load on Position 1

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Bridge Model No.	Load on Lane	Beam No.	Experimental Moment Percentages	Deflection Percentages	Coeff. of Moment of Inertia	```Estimated Moment Percentages```	Difference $(7)-(4)$
$\begin{gathered} 1 \\ \text { a } \\ 1 \end{gathered}$	B-7	1	1	47.90	40.19	1.16	46.20	-1. 70
			2	27.60	31.85	0.84	26.50	-1. 10
			3	14.29	18.78	0.84	15.56	1.27
			4	10.21	9.18	1.16	11.74	1.53
		2	1.	34.86	29.59	1.16	35.15	0.29
			2	29.35	32.94	0.84	28.25	-1.10
			3	19.96	23.89	0.84	20.55	0.59
			4	15.82	13.57	1.16	16.05	0.23
		3	1	23.72	20.40	1.16	24.42	0.70
			2	26.28	29.60	0.84	25.58	-0.70
			3	26.28	29.60	0.84	25.58	-0.70
			4	23.72	20.40	1.16	24.42	0.70

Table 32 Comparison of Experimental and Estimated Moment Percentages at Section I, Load on Position 1

(1)	(2)	(3)	(4)	(5)	(6)
Bridge Model No.	Load on Lane	Beam No .	Experimental Moment Percentages	Estimated Moment Percentages	Difference $(5)-(4)$
		1	42.65	40.90	-1.75
	1	2	29.76	30.74	0.98
	1	3	16.52	18.68	2.16
		4	11.07	9.68	-1.39
B-2	2	1	31.50	30.98	-0.52
		2	31.09	30.78	-0.31
		3	21.51	22.78	1.27
		4	15.90	15.46	-0.44
	3	1	22.71	22.55	-0.16
		2	27.29	27.45	0.16
		3	27.29	27.45	0.16
		4	22.71	22.55	-0.16

Table 33 Comparison of Experimental and Estimated Moment Percentages at Section 1 , Load on Position 1
(1)
(2)
(3)
(4)

Bridge Load Model
No.

		1
	1	2
		3
		1
	2	2
		4
		2
		3
		4

39.80
29.25
17.93
13.02
30.75
29.93
21.95
17.37
23.01
26.99
26.99
23.01
(5)

Estimated Moment Percentages
(6)

Difference (5) $-(4)$
-1.28
0.72
2.02
-1. 46
11.56
-0. 46
-0.35
1.47
-0.66
16.71
-0.12
22.89
0.12
27.11
0.12
27.11
-0.12

Table 34 Comparison of Experimental and Estimated Moment Percentages at Section I, Load on Position 1

(1)	(2)	(3)	(4)	(5)	(6)
Bridge	Load		Eeam	Experimental	Estimated
Model	on	Moment	Moment	Difference	
No.	Lane	No.	Percentages	Percentages	$(5)-(4)$

		1	44.80	44.78	-0.02
	1	2	32.45	30.42	-2.03
	1	3	15.11	16.87	1.76
		4	7.64	7.93	0.29
		1	30.20	30.92	0.72
B-1	2	2	34.81	32.99	-1.82
B-1	2	3	22.32	22.87	0.55
		4	12.67	13.22	0.55
		1	19.32	20.78	1.46
	3	2	30.68	29.22	-1.46
		3	30.68	29.22	-1. 46
		4	19.32	20.78	1.46

Table 35 Comparison of Experimental and Estimated Moment Percentages at Section 1, Load on Position 1

(1)	(2)	(3)	(4)	(5)	(6)
Bridge	Load	Beam	Experimental	Estimated	Moment
Model	on	Moment	Difference		
No.	Lane	No.	Morcentages	Percentages	$(5)-(4)$

	1	1	44.95	43.57	-1.38
		2	32.16	32.31	0.15
		3	14.71	17.37	2.66
		4	8.16	6.74	-1. 42
B-15	2	1	29.67	30.77	1.10
		2	34.98	33.48	-1.50
		3	23.26	23.50	0.24
		4	12.10	12.25	0.15
	3	1	18.70	19.97	1.27
		2	31.30	30.03	-1.27
		3	31.30	30.03	-1.27
		4	18.70	19.97	1.27

Table 36 Comparison of Experimental and Estimated Moment Percentages at Section 1, Load on Position 1

(1)	(2)	(3)	(4)	(5)	(6)
Bridge	Load		Beam	Experimental	Estimated
Model	on	Moment	Moment	Difference	
No.	Lane	No.	Percentages	Percentages	$(5)-(4)$

		1	25.85	23.50	-2.35
		2	21.59	19.84	-1.75
		3	16.57	17.31	0.74
	1	4	12.69	13.43	0.74
		5	8.83	10.85	2.02
		6	7.57	8.28	0.71
		7	6.90	6.78	-0.12
		1	17.73	17.64	-0.09
		2	18.27	17.13	-1.14
		3	17.24	17.10	-0.14
B-16	2	4	15.07	14.92	-0.15
		5	11.94	13.10	1.16
		6	10.31	10.69	0.38
		7	9.45	9.42	-0.03
		1	12.65	12.94	0.29
		2	14.03	13.73	-0.30
		3	15.31	15.62	0.31
	3	4	16.02	15.43	-0.59
		5	15.31	15.62	0.31
		6	14.03	13.73	-0.30
		7	12.65	12.94	0.29

9. FIGURES
$-82=$

Fig. la Cross-Section of Model B4

Note:

$$
X X, Y Y \text { - Horizontal and Vertical }
$$ Centroidal Axes

UU, VV - Neutral Axes
θ - Angle Between Axis UU and Axis $X X$

Fig. 1b Beam-Slab Unit

Fig. 2 Longitudinal View of a Bolted Model

Models $\mathrm{B} 5, \mathrm{~B} 6, \mathrm{~B} 7$, and BB

Fig. 3 Basic Cross-Sections Tested

Fig. 4 Strains in Exterior Beam, Model Al

Fig. 5 Strains in Exterior Beam, Model B4

LOAD	ROTATION OF NEUTRAL AXIS (RADIANS)				
ON LANE	θ_{1}	θ_{2}	θ_{3}	θ_{4}	
1	0.0268	0.0669	0.0836	0.0698	
2	-0.0106	0.0282	0.0511	0.1392	
3	-0.0892	0.0124	-0.0124	0.0898	
$\mathrm{E} \rightarrow$					

Fig. 6 Neutral Axes, Model AI

LOAD	ROTATION OF NEUTRAL AXIS (RADIANS)			
ON LANE	θ_{1}	θ_{2}	θ_{3}	θ_{4}
1	0.0725	0.1203	0.1885	0.2408
2	0.0409	0.0559	0.1549	0.1750
3	-0.0221	0.0236	0.0236	0.0221

Fig. 7 Neutral Axes, Model BI

Fig. 8 Model Bl, Lane 1

Fig. 9 Model Bl, Lane 2

Fig. 10 Model B1, Lane 3

Fig. 11 Model B6, Lane 1

Fig. 12 Model B6, Lane 2

Fig. 13 Model B6, Lane 3

Fig. 14 Model Bll, Lane 1

Fig. 15 Model Bll, Lane 2

Fig. 16 Model Bll, Lane 3

Fig. 17 Model Al, Lane 1

Fig. 18 Model Al, Lane 2

Fig. 19 Model Al, Lane 3

Fig. 20 Rotations, Model B1.

Fig. 21 Rotations, Model B6

Model BII
Fig. 22 Rotations, Model Bll

Model AI

Fig. 23 Rotations, Model Al

Fig. 24 Moments of Inertia, Model Al

Fig. 25 Moments of Inertia, Model B12

Fig. 26 F.M.I. Chart, 4 ft. $x 39$ in. Box Beam
$4^{\prime} \times 30^{\prime \prime}$ Box Beam

FACTORS OF MOMENT OF INERTIA (F.M.I.)

Fig. 27 F.M.I. Chart, 4 ft. $\times 30$ in. Box Beam

Fig. 28 F.M.I. Chart, 3 ft. $x 42$ in. Box Beam

10. REFERENCES

1. American Association of State Highway Officials STANDARD SPECIFICATIONS FOR HIGHWAY BRIDGES, Ninth Edition, Washington, D. C., 1965
2. Carpenter, J. E.

STRUCTURAL MODEL TESTING; COMPENSATION FOR TIME EFFECT IN PLASTICS, Portland Cement Association, Skokie, Illinois, Bull. D60, January 1963
3. Carpenter, J. E., Magura, D. D., and Hanson, N. W. STRUCTURAL MODEL TESTING; TECHNIQUES FOR MODELS OF PLASTIC, Portland Cement Association, Skokie, Illinois, Bull. D76, May 1964
4. Carpenter, J. E. and Magura, D. D.

STRUCTURAL MODEL TESTING; LOAD DISTRIBUTION IN CONCRETE I-BEAM BRIDGES, Portland Cement Association, Skokie, Illinois, Bull. D94, September 1965
5. Guilford, A. A. and VanHorn, D. A.

LATERAL DISTRIBUTION OF VEHICULAR LOADS IN A PRESTRESSED CONCRETE BOX-BEAM BRIDGE, BERWICK BRIDGE, Fritz Engineering Laboratory Report No. 315.4, Lehigh University, October 1967
6. Hondros, G. and Marsh, J. G. LOAD DISTRIBUTION IN COMPOSITE GIRDER-SLAB BRIDGES, ASCE Joumal of Structural Division, Vol. 86, No. STII, New York, November 1960
7. Little, G.

DISTRIBUTION OF A LOAD IN A BOX-SECTION BRIDGE FROM TESTS ON A XYLONITE MODEL, Magazine of Conerete Research, Vol. 6, No. 18, London, December 1954
8. Little, G. and Rowe, R.E.

LOAD DISTRIBUTION IN MULTI-WEBBED BRIDGE STRUCTURES FROM TESTS ON PLASTIC MODELS, Magazine of Concrete Research, Vol. 7, No. 2I, London, November 1955
9. Macías Rendón, M. A. A STRUCTURAL MODEL STUDY OF LOAD DISTRIBUTION IN BOX-BEAM BRIDGES, Ph.D. Dissertation, Lehigh University, May 1968
10. Massonnet, C.
METHODE DE CALCUL DES PONTS A POUTRES MULTIPLES TENANT COMPTE DE LEUR RESISTANCE A LA TORSION, (Method of Calculation for Bridges With Several Longitudinal Beams, Taking Into Consideration Their Torsional Resistance), Publications, IABSE, Zurich, Vol. 10, 1950
11. Mattock, A. H. and Kaar, P. H. PRECAST-PRESTRESSED CONCRETE BRIDGES 6. TESTS OF HALF-SCALE HIGHWAY BRIDGE CONTINUOUS OVER TWO SPANS, Portland Cement Association, Skokie, Illinois, Bull. D51, September 1961
12. Newmark, N. M.
DISTRIBUTION PROCEDURE FOR ANALYSIS OF SLABS OVER FLEXIBLE SUPPORTS, University of Illinois Engineering Experimental Station Bulletin No. 304, June 1938
13. Pennsylvania Department of Highways STANDARDS FOR PRESTRESSED CONCRETE BRIDGES, ST-200 through ST-208, Harrisburg, Pennsylvania, 1964
14. Reese, R. T.
LOAD DISTRIBUTION IN HIGHWAY BRIDGE FLOORS: A SUMMARY AND EXAMINATION OF EXISTING METHODS OF ANALYSIS AND DESIGN AND CORRESPONDING RESULTS, Brigham Young University, M.S.Thesis, 1966
15. Richart, F.E.
LABORATORY RESEARCH ON CONCRETE BRIDGE FLOORS, Highway Bridge Floors, A Symposium, ASCE Proceedings, Part I, March, 1948
16. Roll, F. and Aneja, I.
MODEL TESTS OF BOX-BEAM HIGHWAY BRIDGES WITH CANTILEVERED DECK SLABS, ASCE Transportation Engineering Conference Reprint No. 395, Philadelphia, Pennsylvania, October 1966
17. Rowe, R.E.
CONCRETE BRIDGE DESIGN, John Wiley and Sons, Inc., New York, 1962
18. Stevens, L. K. and Gosbell, K. B. MODEL ANALYSIS OF A COMPOSITE BEAM AND SLAB BRIDGE, Australian Road Research Board Proceedings, Vol. 2, 1964
19. Westlund, G. and Ostlund, L.

TESTS ON A BRIDGE MODEL, Publications, IABSE, Zurich, 1950

