1,257 research outputs found

    Algorithms in nature: the convergence of systems biology and computational thinking

    Get PDF
    Biologists rely on computational methods to analyze and integrate large data sets, while several computational methods were inspired by the high-level design principles of biological systems. This Perspectives discusses the recent convergence of these two ways of thinking

    Control of Canalization and Evolvability by Hsp90

    Get PDF
    Partial reduction of Hsp90 increases expression of morphological novelty in qualitative traits of Drosophila and Arabidopsis, but the extent to which the Hsp90 chaperone also controls smaller and more likely adaptive changes in natural quantitative traits has been unclear. To determine the effect of Hsp90 on quantitative trait variability we deconstructed genetic, stochastic and environmental components of variation in Drosophila wing and bristle traits of genetically matched flies, differing only by Hsp90 loss-of-function or wild-type alleles. Unexpectedly, Hsp90 buffering was remarkably specific to certain normally invariant and highly discrete quantitative traits. Like the qualitative trait phenotypes controlled by Hsp90, highly discrete quantitative traits such as scutellor and thoracic bristle number are threshold traits. When tested across genotypes sampled from a wild population or in laboratory strains, the sensitivity of these traits to many types of variation was coordinately controlled, while continuously variable bristle types and wing size, and critically invariant left-right wing asymmetry, remained relatively unaffected. Although increased environmental variation and developmental noise would impede many types of selection response, in replicate populations in which Hsp90 was specifically impaired, heritability and ‘extrinsic evolvability’, the expected response to selection, were also markedly increased. However, despite the overall buffering effect of Hsp90 on variation in populations, for any particular individual or genotype in which Hsp90 was impaired, the size and direction of its effects were unpredictable. The trait and genetic-background dependence of Hsp90 effects and its remarkable bias toward invariant or canalized traits support the idea that traits evolve independent and trait-specific mechanisms of canalization and evolvability through their evolution of non-linearity and thresholds. Highly non-linear responses would buffer variation in Hsp90-dependent signaling over a wide range, while over a narrow range of signaling near trait thresholds become more variable with increasing probability of triggering all-or-none developmental responses

    Canalization of Gene Expression and Domain Shifts in the Drosophila Blastoderm by Dynamical Attractors

    Get PDF
    The variation in the expression patterns of the gap genes in the blastoderm of the fruit fly Drosophila melanogaster reduces over time as a result of cross regulation between these genes, a fact that we have demonstrated in an accompanying article in PLoS Biology (see Manu et al., doi:10.1371/journal.pbio.1000049). This biologically essential process is an example of the phenomenon known as canalization. It has been suggested that the developmental trajectory of a wild-type organism is inherently stable, and that canalization is a manifestation of this property. Although the role of gap genes in the canalization process was established by correctly predicting the response of the system to particular perturbations, the stability of the developmental trajectory remains to be investigated. For many years, it has been speculated that stability against perturbations during development can be described by dynamical systems having attracting sets that drive reductions of volume in phase space. In this paper, we show that both the reduction in variability of gap gene expression as well as shifts in the position of posterior gap gene domains are the result of the actions of attractors in the gap gene dynamical system. Two biologically distinct dynamical regions exist in the early embryo, separated by a bifurcation at 53% egg length. In the anterior region, reduction in variation occurs because of stability induced by point attractors, while in the posterior, the stability of the developmental trajectory arises from a one-dimensional attracting manifold. This manifold also controls a previously characterized anterior shift of posterior region gap domains. Our analysis shows that the complex phenomena of canalization and pattern formation in the Drosophila blastoderm can be understood in terms of the qualitative features of the dynamical system. The result confirms the idea that attractors are important for developmental stability and shows a richer variety of dynamical attractors in developmental systems than has been previously recognized

    Genetics of Microenvironmental Sensitivity of Body Weight in Rainbow Trout (Oncorhynchus mykiss) Selected for Improved Growth

    Get PDF
    Microenvironmental sensitivity of a genotype refers to the ability to buffer against non-specific environmental factors, and it can be quantified by the amount of residual variation in a trait expressed by the genotype’s offspring within a (macro)environment. Due to the high degree of polymorphism in behavioral, growth and life-history traits, both farmed and wild salmonids are highly susceptible to microenvironmental variation, yet the heritable basis of this characteristic remains unknown. We estimated the genetic (co)variance of body weight and its residual variation in 2-year-old rainbow trout (Oncorhynchus mykiss) using a multigenerational data of 45,900 individuals from the Finnish national breeding programme. We also tested whether or not microenvironmental sensitivity has been changed as a correlated genetic response when genetic improvement for growth has been practiced over five generations. The animal model analysis revealed the presence of genetic heterogeneity both in body weight and its residual variation. Heritability of residual variation was remarkably lower (0.02) than that for body weight (0.35). However, genetic coefficient of variation was notable in both body weight (14%) and its residual variation (37%), suggesting a substantial potential for selection responses in both traits. Furthermore, a significant negative genetic correlation (−0.16) was found between body weight and its residual variation, i.e., rapidly growing genotypes are also more tolerant to perturbations in microenvironment. The genetic trends showed that fish growth was successfully increased by selective breeding (an average of 6% per generation), whereas no genetic change occurred in residual variation during the same period. The results imply that genetic improvement for body weight does not cause a concomitant increase in microenvironmental sensitivity. For commercial production, however, there may be high potential to simultaneously improve weight gain and increase its uniformity if both criteria are included in a selection index

    Studies of new Higgs boson interactions through nonresonant HH production in the b¯bγγ fnal state in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A search for nonresonant Higgs boson pair production in the b ÂŻbγγ fnal state is performed using 140 fb−1 of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. This analysis supersedes and expands upon the previous nonresonant ATLAS results in this fnal state based on the same data sample. The analysis strategy is optimised to probe anomalous values not only of the Higgs (H) boson self-coupling modifer Îșλ but also of the quartic HHV V (V = W, Z) coupling modifer Îș2V . No signifcant excess above the expected background from Standard Model processes is observed. An observed upper limit ”HH < 4.0 is set at 95% confdence level on the Higgs boson pair production cross-section normalised to its Standard Model prediction. The 95% confdence intervals for the coupling modifers are −1.4 < Îșλ < 6.9 and −0.5 < Îș2V < 2.7, assuming all other Higgs boson couplings except the one under study are fxed to the Standard Model predictions. The results are interpreted in the Standard Model efective feld theory and Higgs efective feld theory frameworks in terms of constraints on the couplings of anomalous Higgs boson (self-)interactions

    Measurement of exclusive pion pair production in proton–proton collisions at √s=7 TeV with the ATLAS detector

    Get PDF

    Comparison of inclusive and photon-tagged jet suppression in 5.02 TeV Pb+Pb collisions with ATLAS

    Get PDF

    Searches for lepton-flavour-violating decays of the Higgs boson into eτ and Ότ in \sqrt{s} = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    Abstract This paper presents direct searches for lepton flavour violation in Higgs boson decays, H → eτ and H → Ότ, performed using data collected with the ATLAS detector at the LHC. The searches are based on a data sample of proton-proton collisions at a centre-of-mass energy s s \sqrt{s} = 13 TeV, corresponding to an integrated luminosity of 138 fb−1. Leptonic (τ → ℓΜℓΜτ) and hadronic (τ → hadrons Μτ) decays of the τ-lepton are considered. Two background estimation techniques are employed: the MC-template method, based on data-corrected simulation samples, and the Symmetry method, based on exploiting the symmetry between electrons and muons in the Standard Model backgrounds. No significant excess of events is observed and the results are interpreted as upper limits on lepton-flavour-violating branching ratios of the Higgs boson. The observed (expected) upper limits set on the branching ratios at 95% confidence level, B B \mathcal{B} (H → eτ) < 0.20% (0.12%) and B B \mathcal{B} (H → Ότ ) < 0.18% (0.09%), are obtained with the MC-template method from a simultaneous measurement of potential H → eτ and H → Ότ signals. The best-fit branching ratio difference, B B \mathcal{B} (H → Ότ) → B B \mathcal{B} (H → eτ), measured with the Symmetry method in the channel where the τ-lepton decays to leptons, is (0.25 ± 0.10)%, compatible with a value of zero within 2.5σ

    Search for resonant WZ production in the fully leptonic final state in proton–proton collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    • 

    corecore