15 research outputs found

    Integrated presentation of ecological risk from multiple stressors

    Get PDF
    Current environmental risk assessments (ERA) do not account explicitly for ecological factors (e.g. species composition, temperature or food availability) and multiple stressors. Assessing mixtures of chemical and ecological stressors is needed as well as accounting for variability in environmental conditions and uncertainty of data and models. Here we propose a novel probabilistic ERA framework to overcome these limitations, which focusses on visualising assessment outcomes by construct-ing and interpreting prevalence plots as a quantitative prediction of risk. Key components include environmental scenarios that integrate exposure and ecology, and ecological modelling of relevant endpoints to assess the effect of a combination of stressors. Our illustrative results demonstrate the importance of regional differences in environmental conditions and the confounding interactions of stressors. Using this framework and prevalence plots provides a risk-based approach that combines risk assessment and risk management in a meaningful way and presents a truly mechanistic alternative to the threshold approach. Even whilst research continues to improve the underlying models and data, regulators and decision makers can already use the framework and prevalence plots. The integration of multiple stressors, environmental conditions and variability makes ERA more relevant and realistic

    A multimedia fate model to support chemical management in China:a case study for selected trace organics

    Get PDF
    SESAMe v3.3, a spatially explicit multimedia fate model for China, is a tool suggested to support quantitative risk assessment for national scale chemical management. The key advantage over the previous version SESAMe v3.0 is consideration of spatially varied environmental pH. We evaluate the model performance using estimates of emission from total industry usage of three UV filters (benzophenone-3, octocrylene, and octyl methoxycinnamate) and three antimicrobials (triclosan, triclocarban, and climbazole). The model generally performs well for the six case study chemicals as shown by the comparison between predictions and measurements. The importance of accounting for chemical ionization is demonstrated with the fate and partitioning of both triclosan and climbazole sensitivity to environmental pH. The model predicts ionizable chemicals (triclosan, climbazole, benzophenone-3) to primarily partition into soils at steady state, despite hypothetically only being released to freshwaters, as a result of agricultural irrigation by freshwater. However, further model calibration is needed when more field data becomes available for soils and sediments and for larger areas of water. As an example, accounting for the effect of pH in the environmental risk assessment of triclosan, limited freshwater areas (0.03% or ca. 55 km2) in mainland China are modeled to exceed its conservative environmental no-effect threshold. SESAMe v3.3 can be used to support the development of chemical risk assessment methodologies with the spatial aspects of the model providing a guide to the identification regions of interest in which to focus monitoring campaigns or develop a refined risk assessment

    Potential impact of chemical stress on freshwater invertebrates : A sensitivity assessment on continental and national scale based on distribution patterns, biological traits, and relatedness.

    Get PDF
    Current chemical risk assessment approaches rely on a standard suite of test species to assess toxicity to environmental species. Assessment factors are used to extrapolate from single species to communities and ecosystem effects. This approach is pragmatic, but lacks resolution in biological and environmental parameters. Novel modelling approaches can help improve the biological resolution of assessments by using mechanistic information to identify priority species and priority regions that are potentially most impacted by chemical stressors. In this study we developed predictive sensitivity models by combining species-specific information on acute chemical sensitivity (LC50 and EC50), traits, and taxonomic relatedness. These models were applied at two spatial scales to reveal spatial differences in the sensitivity of species assemblages towards two chemical modes of action (MOA): narcosis and acetylcholinesterase (AChE) inhibition. We found that on a relative scale, 46% and 33% of European species were ranked as more sensitive towards narcosis and AChE inhibition, respectively. These more sensitive species were distributed with higher occurrences in the south and north-eastern regions, reflecting known continental patterns of endemic macroinvertebrate biodiversity. We found contradicting sensitivity patterns depending on the MOA for UK scenarios, with more species displaying relative sensitivity to narcotic MOA in north and north-western regions, and more species with relative sensitivity to AChE inhibition MOA in south and south-western regions. Overall, we identified hotspots of species sensitive to chemical stressors at two spatial scales, and discuss data gaps and crucial technological advances required for the successful application of the proposed methodology to invertebrate scenarios, which remain underrepresented in global conservation priorities.</p

    Modeling the Sensitivity of Aquatic Macroinvertebrates to Chemicals Using Traits

    No full text
    In this study, a trait-based macroinvertebrate sensitivity modeling tool is presented that provides two main outcomes: (1) it constructs a macroinvertebrate sensitivity ranking and, subsequently, a predictive trait model for each one of a diverse set of predefined Modes of Action (MOAs) and (2) it reveals data gaps and restrictions, helping with the direction of future research. Besides revealing taxonomic patterns of species sensitivity, we find that there was not one genus, family, or class which was most sensitive to all MOAs and that common test taxa were often not the most sensitive at all. Traits like life cycle duration and feeding mode were identified as important in explaining species sensitivity. For 71% of the species, no or incomplete trait data were available, making the lack of trait data the main obstacle in model construction. Research focus should therefore be on completing trait databases and enhancing them with finer morphological traits, focusing on the toxicodynamics of the chemical (e.g., target site distribution). Further improved sensitivity models can help with the creation of ecological scenarios by predicting the sensitivity of untested species. Through this development, our approach can help reduce animal testing and contribute toward a new predictive ecotoxicology framework.</p

    Data-driven learning of narcosis mode of action identifies a CNS transcriptional signature shared between whole organism Caenorhabditis elegans and a fish gill cell line.

    Get PDF
    With the large numbers of man-made chemicals produced and released in the environment, there is a need to provide assessments on their potential effects on environmental safety and human health. Current regulatory frameworks rely on a mix of both hazard and risk-based approaches to make safety decisions, but the large number of chemicals in commerce combined with an increased need to conduct assessments in the absence of animal testing makes this increasingly challenging. This challenge is catalysing the use of more mechanistic knowledge in safety assessment from both in silico and in vitro approaches in the hope that this will increase confidence in being able to identify modes of action (MoA) for the chemicals in question. Here we approach this challenge by testing whether a functional genomics approach in C. elegans and in a fish cell line can identify molecular mechanisms underlying the effects of narcotics, and the effects of more specific acting toxicants. We show that narcosis affects the expression of neuronal genes associated with CNS function in C. elegans and in a fish cell line. Overall, we believe that our study provides an important step in developing mechanistically relevant biomarkers which can be used to screen for hazards, and which prevent the need for repeated animal or cross-species comparisons for each new chemical
    corecore