20 research outputs found

    Imaging Microglial/Macrophage Activation in Spinal Cords of Experimental Autoimmune Encephalomyelitis Rats by Positron Emission Tomography Using the Mitochondrial 18kDa Translocator Protein Radioligand [18F]DPA-714

    Get PDF
    Multiple sclerosis (MS) is an inflammatory demyelinating disease of the CNS. Activated microglia/macrophages play a key role in the immunopathogenesis of MS and its corresponding animal models, experimental autoimmune encephalomyelitis (EAE). Microglia activation begins at early stages of the disease and is associated with elevated expression of the 18 kDa mitochondrial translocator protein (TSPO). Thus, positron emission tomography (PET) imaging of microglial activation using TSPO-specific radioligands could be valuable for monitoring disease-associated neuroinflammatory processes. EAE was induced in rats using a fragment of myelin basic protein, yielding acute clinical disease that reflects extensive spinal cord inflammation. Enhanced TSPO expression in spinal cords of EAE rats versus those of controls was confirmed by Western blot and immunohistochemistry. Biodistribution studies in control and EAE rats were performed using the TSPO radioligand [18F]DPA-714 [N,N-diethyl-2-(2-(4-(2-fluoroethoxy)phenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl)acetamide]. At 1 h after injection, almost fivefold higher levels of [18F]DPA-714 were measured in spinal cords of EAE rats versus controls. The specific binding of [18F]DPA-714 to TSPO in spinal cords was confirmed in competition studies, using unlabeled (R,S)-PK11195 [(R,S)-N-methyl-N-(1-methylpropyl)-1-(2-chlorophenyl)isoquinoline-3-carboxamide)] or DPA-714 in excess. MicroPET studies affirm that this differential radioactivity uptake in spinal cords of EAE versus control rats could be detected and quantified. Using [18F]DPA-714, neuroinflammation in spinal cords of EAE-induced rats could be visualized by PET, offering a sensitive technique for monitoring neuroinflammatory lesions in the CNS and particularly in the spinal cord. In addition to current MRI protocols, this approach could provide molecular images of neuroinflammation for detection, monitoring, and research in MS

    High density of nicotinic receptors in the cingulo-insular network

    No full text
    The nicotinic system plays an important role in ordinary cognition, particularly in attention. The main nicotinic receptor in the human brain is the heteromeric α4β2 neuronal nicotinic acetylcholine receptor (nAChR), which is distributed throughout the brain, with an especially high density in the thalamus and brainstem. Despite the important role of α4β2 nAChRs in various physiological functions and pathological conditions, their distribution in the human cortex remains poorly characterized. We assessed the in vivo distribution of α4β2 nAChRs in the human cortex in a group of seven non-smoking healthy subjects, using 2-[(18)F]F-A-85380 PET and a volume-of-interest-based analysis. We showed that cortical nAChR density was highest in the insular and anterior cingulate cortices. In functional magnetic resonance imaging studies, these two cortical regions and the thalamus have been shown to be highly correlated during the resting state and various tasks. Here, we also directly assessed nAChR density in this cingulo-insular network as defined in an independent dataset using resting-state functional connectivity, and compared it to other control-related networks, to the default mode network as well as to sensory and motor networks. Receptor density was significantly higher in the cingulo-insular network. This network has been suggested to maintain a variety of foundational capacities fundamental to cognitive function. The demonstration of a high nAChR density in the insular and anterior cingulate cortices reflects a particular neurochemical organization of the cingulo-insular network, and suggests an important role of the nicotinic receptors in its functions

    Multimodal In Vivo Imaging of Tumorigenesis and Response to Chemotherapy in a Transgenic Mouse Model of Mammary Cancer

    Get PDF
    International audiencePurpose: Transgenic mice expressing the polyoma middle T oncoprotein (PyMT) in the mammary epithelium were explored by multimodal imaging to monitor longitudinally spontaneous tumor growth and response to chemotherapy.Procedures: Positron emission tomography (PET) with 2-deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG) and 3'-deoxy-3'-[ 18 F]fluorothymidine ([ 18 F]FLT), single photon emission tomography (SPECT) with [ 99m Tc]TcO 4 ([ 99m Tc]TEC), X-ray computed tomography, and fluorescent confocal endomicroscopy (FCE) images were acquired during tumor progression in female PyMT mice. Imaging with [ 18 F]FDG and [ 99m Tc]TEC was also performed in untreated, doxorubicin-treated, and docetaxel-treated PyMT mice. Total tumor volumes were quantified. Tumors were collected and macroscopic and histological examinations were performed. Results: All PyMT mice developed multifocal tumors of the mammary epithelium that became palpable at 8 weeks of age (W8). Computed tomography (CT) detected tumors at W14, while a clear tumoral uptake of [ 99m Tc]TEC and [ 18 F]FDG was present as early as W6 and W8, respectively. No contrast between mammary tumors and surrounding tissue was observed at any stage with [ 18 F]FLT. FCE detected an angiogenic switch at W10. Lung metastases were not clearly evidenced by imaging. Doxorubicin and docetaxel treatments delayed tumor growth, as shown by [ 18 F]FDG and [ 99m Tc]TEC, but tumor growth resumed upon treatment discontinuation. Tumor growth fitted an exponential model with time constant rates of 0.315, 0.145, and 0.212 week−1 in untreated, doxorubicin, and docetaxel groups, respectively.Conclusions: Molecular imaging of mammary tumors in PyMT is precocious, precise, and predictive. [18F]FDG-PET and [99mTc]TEC SPECT monitor tumor response to chemotherapy

    Distinct patterns of antiamyloid-β antibodies in typical and atypical Alzheimer disease

    No full text
    International audienceOBJECTIVE: To compare serum antiamyloid-β (Aβ) antibodies in typical and atypical Alzheimer disease (AD). DESIGN: Preliminary observations. SUBJECTS: Thirteen patients with AD, 8 patients with posterior cortical atrophy with evidence of AD (PCA-AD) pathophysiological process by both cerebrospinal fluid (CSF) biomarkers and amyloid imaging, and 12 age-matched control individuals. INTERVENTIONS: The class and subclass levels of serum anti-Aβ antibodies were measured using an oligomer-based enzyme-linked immunosorbent assay. This method allowed measuring both free antibodies and, after acidic treatment, the total fraction that includes all antibodies complexed with circulating Aβ40/42 and any cross-reacting antigen. RESULTS: Anti-Aβ IgG were restricted to the IgG1 and IgG3 subclasses. Their total levels were strikingly lower and more homogeneous in patients with PCA compared with both typical AD and controls, while biomarkers of amyloid deposition (CSF Aβ42 and positron emission tomography amyloid imaging) were similar in patients with AD and patients with PCA. CONCLUSIONS: Serum anti-Aβ IgG1 and IgG3 antibodies differ between distinct forms of AD. Its significance is discussed for possible implications as immune effectors in the specific pathophysiology of AD variants

    Similar amyloid-β burden in posterior cortical atrophy and Alzheimer's disease

    No full text
    International audienceWhile the clinical presentation of posterior cortical atrophy is clearly distinct from typical Alzheimer's disease, neuropathological studies have suggested that most patients with posterior cortical atrophy have Alzheimer's disease with an atypical visual presentation. We analysed in vivo pathophysiological markers of Alzheimer's disease such as cerebrospinal fluid biomarkers and positron emission tomography imaging with ¹¹C-labelled Pittsburgh compound-B in posterior cortical atrophy to determine whether biochemical profile and fibrillar amyloid-β burden topography are associated with the clinical presentation. Nine patients with posterior cortical atrophy and nine with typical Alzheimer's disease individually matched for age, duration and severity of the disease and 10 cognitively normal age-matched controls were included. ¹¹C-labelled Pittsburgh compound-B images were analysed both using volumes of interest and on a voxel-wise basis using statistical parametric mapping, taking into account the individual regional cortical atrophy. Cerebrospinal fluid biomarkers did not differ between posterior cortical atrophy and patients with Alzheimer's disease. Compared with normal controls, both posterior cortical atrophy and Alzheimer's disease groups showed increased ¹¹C-labelled Pittsburgh compound-B uptake. No significant difference was found in regional or global ¹¹C-labelled Pittsburgh compound-B binding between posterior cortical atrophy and Alzheimer's disease groups with both volumes of interest and voxel-wise basis using statistical parametric mapping methods. Our findings demonstrate that cerebrospinal fluid biomarkers and positron emission tomography imaging with ¹¹C-labelled Pittsburgh compound-B may be useful in identifying an atypical visual form of Alzheimer's disease. The similar topography of fibrillar amyloid-β deposition between typical Alzheimer's disease and posterior cortical atrophy groups suggests that, although amyloid-β accumulation plays a critical role in the pathogenesis of Alzheimer's disease, other factors such as neurofibrillary tangles may contribute to the different clinical features observed in posterior cortical atrophy

    [18F]DPA-714: Direct Comparison with [11C]PK11195 in a Model of Cerebral Ischemia in Rats

    Get PDF
    PURPOSE: Neuroinflammation is involved in several brain disorders and can be monitored through expression of the translocator protein 18 kDa (TSPO) on activated microglia. In recent years, several new PET radioligands for TSPO have been evaluated in disease models. [(18)F]DPA-714 is a TSPO radiotracer with great promise; however results vary between different experimental models of neuroinflammation. To further examine the potential of [(18)F]DPA-714, it was compared directly to [(11)C]PK11195 in experimental cerebral ischaemia in rats. METHODS: Under anaesthesia, the middle cerebral artery of adult rats was occluded for 60 min using the filament model. Rats were allowed recovery for 5 to 7 days before one hour dynamic PET scans with [(11)C]PK11195 and/or [(18)F]DPA-714 under anaesthesia. RESULTS: Uptake of [(11)C]PK11195 vs [(18)F]DPA-714 in the ischemic lesion was similar (core/contralateral ratio: 2.84±0.67 vs 2.28±0.34 respectively), but severity of the brain ischemia and hence ligand uptake in the lesion appeared to vary greatly between animals scanned with [(11)C]PK11195 or with [(18)F]DPA-714. To solve this issue of inter-individual variability, we performed a direct comparison of [(11)C]PK11195 and [(18)F]DPA-714 by scanning the same animals sequentially with both tracers within 24 h. In this direct comparison, the core/contralateral ratio (3.35±1.21 vs 4.66±2.50 for [(11)C]PK11195 vs [(18)F]DPA-714 respectively) showed a significantly better signal-to-noise ratio (1.6 (1.3–1.9, 95%CI) fold by linear regression) for [(18)F]DPA-714. CONCLUSIONS: In a clinically relevant model of neuroinflammation, uptake for both radiotracers appeared to be similar at first, but a high variability was observed in our model. Therefore, to truly compare tracers in such models, we performed scans with both tracers in the same animals. By doing so, our result demonstrated that [(18)F]DPA-714 displayed a higher signal-to-noise ratio than [(11)C]PK11195. Our results suggest that, with the longer half-life of [(18)F] which facilitates distribution of the tracer across PET centre, [(18)F]DPA-714 is a good alternative for TSPO imaging
    corecore