62 research outputs found

    Genome-Wide Multiple Sclerosis Association Data and Coagulation

    Get PDF
    The emerging concept of a crosstalk between hemostasis, inflammation, and immune system prompt recent works on coagulation cascade in multiple sclerosis (MS). Studies on MS pathology identified several coagulation factors since the beginning of the disease pathophysiology: fibrin deposition with breakdown of blood brain barrier, and coagulation factors within active plaques may exert pathogenic role, especially through the innate immune system. Studies on circulating coagulation factors showed complex imbalance involving several components of hemostasis cascade (thrombin, factor X, factor XII). To analyze the role of the coagulation process in connection with other pathogenic pathways, we implemented a systematic matching of genome-wide association studies (GWAS) data with an informative and unbiased network of coagulation pathways. Using MetaCore (version 6.35 build 69300, 2018) we analyzed the connectivity (i.e., direct and indirect interactions among two networks) between the network of the coagulation process and the network resulting from feeding into MetaCore the MS GWAS data. The two networks presented a remarkable over-connectivity: 958 connections vs. 561 expected by chance; z-score = 17.39; p-value < 0.00001. Moreover, genes coding for cluster of differentiation 40 (CD40) and plasminogen activator, urokinase (PLAU) shared both networks, pointed to an integral interplay between coagulation cascade and main pathogenic immune effectors. In fact, CD40 pathways is especially operative in B cells, that are currently a major therapeutic target in MS field. The potential interaction of PLAU with a signal of paramount importance for B cell pathogenicity, such as CD40, suggest new lines of research and pave the way to implement new therapeutic targets

    OREMP: Ontology Reasoning Engine for Molecular Pathways

    Get PDF
    The information about molecular processes is shared continuously in the form of runnable pathway collections, and biomedical ontologies provide a semantic context to the majority of those pathways. Recent advances in both fields pave the way for a scalable information integration based on aggregate knowledge repositories, but the lack of overall standard formats impedes this progress. Here we propose a strategy that integrates these resources by means of extended ontologies built on top of a common meta-format. Information sharing, integration and discovery are the primary features provided by the system; additionally, two current field applications of the system are reported

    Noise in multiple sclerosis: unwanted and necessary

    Get PDF
    As our knowledge about the etiology of multiple sclerosis (MS) increases, deterministic paradigms appear insufficient to describe the pathogenesis of the disease, and the impression is that stochastic phenomena (i.e. random events not necessarily resulting in disease in all individuals) may contribute to the development of MS. However, sources and mechanisms of stochastic behavior have not been investigated and there is no proposed framework to incorporate nondeterministic processes into disease biology. In this report, we will first describe analogies between physics of nonlinear systems and cell biology, showing how small-scale random perturbations can impact on large-scale phenomena, including cell function. We will then review growing and solid evidence showing that stochastic gene expression (or gene expression “noise”) can be a driver of phenotypic variation. Moreover, we will describe new methods that open unprecedented opportunities for the study of such phenomena in patients and the impact of this information on our understanding of MS course and therapy

    Methylation-dependent PAD2 upregulation in multiple sclerosis peripheral blood

    Get PDF
    Background: Peptidylarginine deiminase 2 (PAD2) and peptidylarginine deiminase 4 (PAD4) are two members of PAD family which are over-expressed in the multiple sclerosis (MS) brain. Through its enzymatic activity PAD2 converts myelin basic protein (MBP) arginines into citrullines - an event that may favour autoimmunity - while peptidylarginine deiminase 4 (PAD4) is involved in chromatin remodelling. Objectives: Our aim was to verify whether an altered epigenetic control of PAD2, as already shown in the MS brain, can be observed in peripheral blood mononuclear cells (PBMCs) of patients with MS since some of these cells also synthesize MBP. Methods: The expression of most suitable reference genes and of PAD2 and PAD4 was assessed by qPCR. Analysis of DNA methylation was performed by bisulfite method. Results: The comparison of PAD2 expression level in PBMCs from patients with MS vs. healthy donors showed that, as well as in the white matter of MS patients, the enzyme is significantly upregulated in affected subjects. Methylation pattern analysis of a CpG island located in the PAD2 promoter showed that over-expression is associated with promoter demethylation. Conclusion: Defective regulation of PAD2 in the periphery, without the immunological shelter of the blood-brain barrier, may contribute to the development of the autoimmune responses in MS

    A staged screening of registered drugs highlights remyelinating drug candidates for clinical trials

    Get PDF
    There is no treatment for the myelin loss in multiple sclerosis, ultimately resulting in the axonal degeneration that leads to the progressive phase of the disease. We established a multi-tiered platform for the sequential screening of drugs that could be repurposed as remyelinating agents. We screened a library of 2,000 compounds (mainly Food and Drug Administration (FDA)-approved compounds and natural products) for cellular metabolic activity on mouse oligodendrocyte precursors (OPC), identifying 42 molecules with significant stimulating effects. We then characterized the effects of these compounds on OPC proliferation and differentiation in mouse glial cultures, and on myelination and remyelination in organotypic cultures. Three molecules, edaravone, 5-methyl-7-methoxyisoflavone and lovastatin, gave positive results in all screening tiers. We validated the results by retesting independent stocks of the compounds, analyzing their purity, and performing dose-response curves. To identify the chemical features that may be modified to enhance the compounds' activity, we tested chemical analogs and identified, for edaravone, the functional groups that may be essential for its activity. Among the selected remyelinating candidates, edaravone appears to be of strong interest, also considering that this drug has been approved as a neuroprotective agent for acute ischemic stroke and amyotrophic lateral sclerosis in Japan

    GWAS-associated Variants, Non-genetic Factors, and Transient Transcriptome in Multiple Sclerosis Etiopathogenesis: a Colocalization Analysis [preprint]

    Get PDF
    A clinically actionable understanding of multiple sclerosis (MS) etiology goes through GWAS interpretation, prompting research on new gene regulatory models. Our previous works on these topics suggested a stochastic etiologic model where small-scale random perturbations could eventually reach a threshold for MS onset and progression. A new sequencing technology has mapped the transient transcriptome (TT), including intergenic RNAs, and antisense intronic RNAs. Through a rigorous colocalization analysis, here we show that genomic regions coding for the TT were significantly enriched for both MS-associated GWAS variants, and DNA binding sites for molecular transducers mediating putative, non-genetic, etiopathogenetic factors for MS (e.g., vitamin D deficiency, Epstein Barr virus latent infection, B cell dysfunction). These results suggest a model whereby TT-coding regions are hotspots of convergence between genetic ad non-genetic factors of risk/protection for MS (and plausibly for other complex disorders). Our colocalization analysis also provides a freely available data resource at www.mscoloc.com for future research on transcriptional regulation in MS

    In Silico Modeling of Shear-Stress-Induced Nitric Oxide Production in Endothelial Cells through Systems Biology

    Get PDF
    Nitric oxide (NO) produced by vascular endothelial cells is a potent vasodilator and an antiinflammatory mediator. Regulating production of endothelial-derived NO is a complex undertaking, involving multiple signaling and genetic pathways that are activated by diverse humoral and biomechanical stimuli. To gain a thorough understanding of the rich diversity of responses observed experimentally, it is necessary to account for an ensemble of these pathways acting simultaneously. In this article, we have assembled four quantitative molecular pathways previously proposed for shear-stress-induced NO production. In these pathways, endothelial NO synthase is activated 1), via calcium release, 2), via phosphorylation reactions, and 3), via enhanced protein expression. To these activation pathways, we have added a fourth, a pathway describing actual NO production from endothelial NO synthase and its various protein partners. These pathways were combined and simulated using CytoSolve, a computational environment for combining independent pathway calculations. The integrated model is able to describe the experimentally observed change in NO production with time after the application of fluid shear stress. This model can also be used to predict the specific effects on the system after interventional pharmacological or genetic changes. Importantly, this model reflects the up-to-date understanding of the NO system, providing a platform upon which information can be aggregated in an additive way.National Institutes of Health (U.S.) (Grant R01HL090856)Singapore-MIT Alliance Computational and Systems Biology Progra

    OREMPdb: a semantic dictionary of computational pathway models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The information coming from biomedical ontologies and computational pathway models is expanding continuously: research communities keep this process up and their advances are generally shared by means of dedicated resources published on the web. In fact, such models are shared to provide the characterization of molecular processes, while biomedical ontologies detail a semantic context to the majority of those pathways. Recent advances in both fields pave the way for a scalable information integration based on aggregate knowledge repositories, but the lack of overall standard formats impedes this progress. Indeed, having different objectives and different abstraction levels, most of these resources "speak" different languages. Semantic web technologies are here explored as a means to address some of these problems.</p> <p>Methods</p> <p>Employing an extensible collection of interpreters, we developed OREMP (Ontology Reasoning Engine for Molecular Pathways), a system that abstracts the information from different resources and combines them together into a coherent ontology. Continuing this effort we present OREMPdb; once different pathways are fed into OREMP, species are linked to the external ontologies referred and to reactions in which they participate. Exploiting these links, the system builds species-sets, which encapsulate species that operate together. Composing all of the reactions together, the system computes all of the reaction paths from-and-to all of the species-sets.</p> <p>Results</p> <p>OREMP has been applied to the curated branch of BioModels (2011/04/15 release) which overall contains 326 models, 9244 reactions, and 5636 species. OREMPdb is the semantic dictionary created as a result, which is made of 7360 species-sets. For each one of these sets, OREMPdb links the original pathway and the link to the original paper where this information first appeared. </p

    Tumor mutational burden and PTEN alterations as molecular correlates of response to PD-1/L1 blockade in metastatic triple-negative breast cancer

    Get PDF
    Purpose: Few patients with metastatic triple-negative breast cancer (mTNBC) benefit from immune checkpoint inhibitors (ICI). On the basis of immunotherapy response correlates in other cancers, we evaluated whether high tumor mutational burden (TMB) ≥10 nonsynonymous mutations/megabase and PTEN alterations, defined as nonsynonymous mutations or 1 or 2 copy deletions, were associated with clinical benefit to anti-PD-1/L1 therapy in mTNBC. Experimental design: We identified patients with mTNBC, who consented to targeted DNA sequencing and were treated with ICIs on clinical trials between April 2014 and January 2019 at Dana-Farber Cancer Institute (Boston, MA). Objective response rate (ORR), progression-free survival (PFS), and overall survival (OS) were correlated with tumor genomic features. Results: Sixty-two women received anti-PD-1/L1 inhibitors alone (23%) or combined with targeted therapy (19%) or chemotherapy (58%). High TMB (18%) was associated with significantly longer PFS (12.5 vs. 3.7 months; P = 0.04), while PTEN alterations (29%) were associated with significantly lower ORR (6% vs. 48%; P = 0.01), shorter PFS (2.3 vs. 6.1 months; P = 0.01), and shorter OS (9.7 vs. 20.5 months; P = 0.02). Multivariate analyses confirmed that these associations were independent of performance status, prior lines of therapy, therapy regimen, and visceral metastases. The survival associations were additionally independent of PD-L1 in patients with known PD-L1 and were not found in mTNBC cohorts treated with chemotherapy (n = 90) and non-ICI regimens (n = 169). Conclusions: Among patients with mTNBC treated with anti-PD-1/L1 therapies, high TMB and PTEN alterations were associated with longer and shorter survival, respectively. These observations warrant validation in larger datasets

    MedPerf : Open Benchmarking Platform for Medical Artificial Intelligence using Federated Evaluation

    Get PDF
    Medical AI has tremendous potential to advance healthcare by supporting the evidence-based practice of medicine, personalizing patient treatment, reducing costs, and improving provider and patient experience. We argue that unlocking this potential requires a systematic way to measure the performance of medical AI models on large-scale heterogeneous data. To meet this need, we are building MedPerf, an open framework for benchmarking machine learning in the medical domain. MedPerf will enable federated evaluation in which models are securely distributed to different facilities for evaluation, thereby empowering healthcare organizations to assess and verify the performance of AI models in an efficient and human-supervised process, while prioritizing privacy. We describe the current challenges healthcare and AI communities face, the need for an open platform, the design philosophy of MedPerf, its current implementation status, and our roadmap. We call for researchers and organizations to join us in creating the MedPerf open benchmarking platform
    • …
    corecore