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ABSTRACT  

A clinically actionable understanding of multiple sclerosis (MS) etiology goes through GWAS 

interpretation, prompting research on new gene regulatory models. Our previous works on these 

topics suggested a stochastic etiologic model where small-scale random perturbations could 

eventually reach a threshold for MS onset and progression. A new sequencing technology has 

mapped the transient transcriptome (TT), including intergenic RNAs, and antisense intronic RNAs. 

Through a rigorous colocalization analysis, here we show that genomic regions coding for the TT 

were significantly enriched for both MS-associated GWAS variants, and DNA binding sites for 

molecular transducers mediating putative, non-genetic, etiopathogenetic factors for MS (e.g., 

vitamin D deficiency, Epstein Barr virus latent infection, B cell dysfunction).  

These results suggest a model whereby TT-coding regions are hotspots of convergence between 

genetic ad non-genetic factors of risk/protection for MS (and plausibly for other complex disorders). 

Our colocalization analysis also provides a freely available data resource at www.mscoloc.com for 

future research on transcriptional regulation in MS. 

GRAPHICAL ABSTRACT 
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INTRODUCTION  

A large body of literature agrees that regulatory genomic intervals, especially those encompassing 

enhancers, are enriched with disease-associated DNA elements. Most of this evidence comes 

from genome wide association studies (GWAS) based on single polymorphism nucleotides (SNPs) 

representing common variants,1-5 even though a recent study showed that low-frequency and rare 

coding variants may somewhat contribute to MS heritability.6 Several characteristics of regulatory 

disease-associated genetic variants complicates GWAS interpretation, prompting research on new 

gene regulatory models: (i) SNPs are chosen as haplotypes to spare the genotyping work needed 

for the large number of samples used in GWAS, therefore fine mapping and epigenetic studies are 

required to integrate GWAS data;7-10 (ii) only a small fraction of supposedly causal disease-

associated variants directly alters recognizable transcription factor binding motifs as it might be 

expected, according to their regulatory function;4 (iii) the identified GWAS signals are likely to exert 

highly contextual (i.e., time- and position-dependent) regulatory effects, that may change according 

to the tissue and to the time when they receive an input from inside or outside the cell. In 

summary, current gene regulatory models help only in part to fully detail which disease-associated 

SNP signals are causal, and by which exact mechanisms they are causal. Recent studies on the 

biological spectrum of human DNase I hypersensitive sites (DHSs), that are disease-associated 

markers of regulatory DNA, may help to better rework GWAS data and particularly to contextualize 

the genomic variants according to tissue/cell states and to gene body colocalization of DHSs.11 In 

this context, the latest version of the Genotype-Tissue Expression project may provide further 

insights into the tissue specificity of genetic effects, supporting the link between regulatory 

mechanisms and traits or complex diseases.12 

Another layer of complexity is revealed by our recent studies suggesting an MS etiologic model 

where stochastic phenomena (i.e., random events not necessarily resulting in disease in all 

individuals) may contribute to the disease onset and progression. This model, embedded between 

physics of stochastic systems and cell biology, suggests how small-scale random perturbations 

would impact on large-scale phenomena, such as disease development. Such perturbations would 

allow to exceed the onset threshold that is believed to be set by genetic and non-genetic 
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susceptibility factors such as microbial or geographical characteristics.13, 14 Such model is 

consistent with our previous results that showed heterogeneity in the MS etiology components in 

twin pairs studies.15-17 This is also in line with prior bioinformatics analyses that determined a 

significant enrichment of binding motifs for Epstein-Barr virus (EBV) nuclear antigen 2 (EBNA2) 

and vitamin D receptor (VDR) in genomic regions containing MS-associated GWAS variants.18 We 

also demonstrated that genomic variants of EBNA2 resulted to be MS-associated,19 and other 

groups have further developed our findings showing that enrichment of EBNA2-binding regions on 

GWAS DNA intervals is involved in the pathogenesis of autoimmune disorders, including MS.20  

A recent sequencing innovation (called TT-seq) allowed to map the transient transcriptome that 

has a typical half-life within minutes, compared to stable RNA elements, such as protein-coding 

mRNAs, long-noncoding RNAs, and micro-RNAs, that persists at least a few hours.21-23 The 

transient transcriptome (TT) includes mostly enhancer RNAs (eRNA), short intergenic non-coding 

RNAs (sincRNA; i.e. promoter-associated RNAs within 10 kb of a GENCODE mRNA transcription 

start site), and antisense RNAs (asRNA). Such TT elements present specific features, some 

similar to and some contrasting those of stable RNAs. More in detail, transient RNAs (trRNA) are 

relatively short in length, they generally lack a secondary structure, and would not present those 

chemical modifications that characterize unidirectional and polyadenylated stable RNAs.21, 24, 25 

Other recent works based on time-resolved analysis, agree on the eRNAs very rapid functional 

dynamics model while interacting with the transcriptional co-activator acetyltransferase CBP/p300 

complex.26, 27 This confirms the highly contextual role of eRNAs through the control of transcription 

burst frequencies, which are known to influence cell-type-specific gene expression profiles.28 Along 

these lines, a recent study showed that T cells selectively filter oscillatory signals within the minute 

timescale,29 further supporting the aforementioned model. 

In summary, on the basis of our previous research (i.e., the heterogeneity in the MS etiology 

components; the stochasticity in the interaction between genetic and non-genetic factors 

contributing to disease development; the enrichment of binding sites for environmental factors in 

MS-associated DNA intervals) and leveraging the recent sequencing innovations in the mapping of 

the transient transcriptome (i.e., the erratic time dynamics and the highly contextual expression),21, 
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22 we hypothesize that MS-associated GWAS signals prevalently fall within regulatory regions of 

DNA coding for transient RNAs (trRNA). In theory, the genomic intervals coding for the transient 

transcriptome may be the hotspots where temporo-spatial occurrences (stochastic in nature, as 

said) may coalesce and so contribute to physiological outcomes (that similarly present as 

developmental and/or adaptive), or possibly give rise to MS onset or progression. This study is 

aimed at verifying this working hypothesis through a colocalization analysis and its further 

dissection.  

 

RESULTS 

MS GWAS and trRNAs - MS-associated GWAS signals colocalize with regulatory regions of 

DNA plausibly coding for trRNAs 

We set up our region-of-interest (ROI) inside GWAS catalogue30 by considering all MS GWAS that 

were published, extracting all SNP positions, and creating a single set of genomic coordinates that 

therefore encompass all GWAS-derived or GWAS-verified signal for MS. We then refined the SNP 

list by pruning out about 1.5% of the SNPs as they did not contain intelligible genomic annotations 

or were duplicates. The final ROI list is reported in Supplementary Table 1 and consists of 603 

unique single-nucleotide regions. 

Next, we matched through colocalization analyses our ROI with lists of regions resulting from the 

work by Michel et al., which mapped the transient and stable transcriptome captured by TT-seq 

after T cell stimulation.21 We found a significant enrichment of MS-associated genetic variants in 

the transient transcriptome (Tab. 1). Of note, when we split the transcriptome list in two subsets for 

long (≥ 60 minutes) and short (< 60 minutes) half-life, we found that only the short half-life subset 

significantly colocalized with the ROI. This finding was indicative of the relationship between MS-

associated GWAS signals and the regulatory regions of DNA coding for trRNA.  

When we further dissected the mapping of the ROI colocalization signals, we found a significant 

excess of intergenic and intron regions (as anticipated), as well as their prevalent distribution away 

from the transcription start site (TSS; Fig. 1A). Notably, when we extended this analysis to GWAS 

data coming from other multifactorial diseases or traits, dividing immune-mediated and other 
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complex conditions, we found highly comparable profiles (Fig. 1B, C; Supplementary Table 2). This 

suggests that the colocalization between MS-associated DNA intervals and intergenic or intronic 

sequences, plausibly referring to tr-RNA coding regions, is shared by the genetic architecture of 

most multifactorial disorders. 

To consolidate this result and gain a deeper biological insight, we extended the colocalization 

analysis matching the ROI with a vast set of databases of regulatory DNA regions, including 

enhancers and super-enhancers, derived from experiments on diverse tissue types (references in 

Supplementary Table 3). To improve interpretability of the results through ranking, we 

implemented a harmonic score, based on the Odd Ratio, the -log(p-value), and the support of 

each match. Statistically significant results came from sets included in SEA, seDB, dbSuper and 

other single lists of enhancers and non-coding RNAs (Fig. 2). Interestingly, we found a strong 

enrichment of MS-associated genetic variants in cell lines of hematopoietic lineage, including 

CD19+ and CD20+ B lymphocytes, CD4+ T helper cells, and CD14+ monocytes. Moreover, 

among the top-scoring hits, we found microglial-specific enhancers, which is in line with recent 

reports on brain cell type-specific enhancer–promoter interactome activities and the latest 

GWAS on MS genomic mapping31, 32. On the other hand, non-relevant tissues serving as 

controls (such as kidney, muscle, glands, etc.) scored low in the ranking, crowding the bottom-

left corner of Figure 2. Given the cell-specificity of the action of regions encoding for eRNA and 

other non-coding RNAs, these results are consistent with a functional relevance of GWAS 

variants in contributing to MS disease mechanisms, by modulating transcription regulation. The 

whole list of results derived from ROI and databases matches is freely available as a data 

resource at www.mscoloc.com to support future research on the actors of transcription 

regulation in MS. 

 

TrRNAs and DBRs - Genetic and non-genetic factors for MS etiology converge in genomic 

regions plausibly coding for the transient transcriptome 

Independent studies support the fact that MS GWAS intervals are enriched with DNA binding 

regions (DBRs) for protein ‘transducers’ mediating non-genetic factors of putative etiologic 
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relevance in MS, such as vitamin D deficiency or EBV latent infection.18, 20 Therefore we further 

inquired whether DNA regions plausibly coding for trRNA share these features (i.e., they colocalize 

with such DRBs). We set up the DBRs for vitamin D receptor (VDR), activation-induced cytidine 

deaminase (AID), Epstein Barr nuclear antigen 2 (EBNA2), Epstein Barr nuclear antigen 3 

(EBNA3C), chosen among viral or host’s nuclear factors potentially associated to MS 

etiopathogenesis.33-36 The DBRs for each nuclear factor were derived from recent literature 

(Supplementary Table 4) and matched with the GWAS-derived MS signals to confirm and expand 

previous results. We found statistically significant results for VDR, EBNA2, and AID for all the SNP 

position extensions (±50, 100, 200 kb), while for EBNA3C significant results came out at extension 

of ±100 and 200 kilobases. This finding suggests that several DBRs are capable of impacting on 

the MS-associated DNA intervals through colocalization (Tab. 2). Notably, when we searched for 

MS-associated regions shared by the DBRs analyzed, we were able to prioritize 275 genomic 

regions capable of binding at least 2 molecular transducers which represent almost half of the MS-

associated GWAS SNPs. These regions are ‘hotspots’ of interactions between genetic and non-

genetic modifier of MS risk/protection. Moreover, all four proteins (VDR, AID, EBNA2, EBNA3C) 

proved to target 24 regions, 3 of them 115 regions, and 2 of them 136 regions (Fig. 3). This data is 

available at www.mscoloc.com, detailing the genomic regions targeted by each of the four 

molecular transducers.  

Building once again on the work by Michel et al.22, we inquired whether there was a colocalization 

between genomic regions containing MS-associated variants, DBRs for VDR, EBNA2, EBNA3C, 

AID, and DNA intervals plausibly coding for trRNA. To this end, we considered the transient 

transcriptome that proved to be enriched with MS-associated variants (Tab. 1), and we then 

matched the corresponding coding regions with the DBRs for the four molecular transducers (for 

this analysis DBRs for EBNA2, EBNA3C, AID and VDR represented the ROI, while the ENCODE 

database of Transcription Factors Binding Sites served as control; Fig. 4). We report the results of 

this analysis in table 3, which shows the colocalization between DNA regions plausibly coding for 

trRNA of both MS-relevant GWAS signals, and DBR of 3 out of 4 factors active at nuclear level, 
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and potentially associated to the disease. The fourth DBR, EBNA3C, did not reach statistical 

significance, though it showed higher values of support for short half-life transcripts. 

 

DBRs and MS GWAS - Genomic regions plausibly coding for the transient transcriptome 

colocalize with MS-associated GWAS signals 

To review and confirm previous colocalizations, we considered the genomic regions resulting from 

the above reported match between the MS-associated GWAS intervals and the databases of 

regulatory DNA regions, containing enhancers and super-enhancers, plausibly enriched in trRNA-

coding sequences (see results in Fig. 2 and the web resource). We therefore matched these DNA 

regions with the DBR for VDR, EBNA2, EBNA3C and AID, finding significant enrichments that 

allow to contextualize and prioritize genomic positions, cell/tissue identity or cell status associated 

to MS. Considering the harmonic score obtained from these colocalization analyses, the top hits 

in EBNA2, EBNA3C, and AID involved lymphoid (CD19+ B cell lines and lymphomas, T 

regulatory cells, tonsils) and monocyte-macrophage lineages (peripheral macrophages, 

dendritic cells) from experiments included in the ENCODE, dbsuper, roadmapEpigenomics 

databases (see also Supplementary Table 5). Even though immune cells prevailed also in VDR 

top hits, a less stringent polarization was seen, somehow reflecting the wide-spreading actions 

of this transducer in human biology. However, with a more stringent cutoff of harmonic score >40 

that selects the most significant hits (Supplementary Fig.1), a core subset of MS-relevant cell 

lineages, shared across all four examined transducers, became evident (Supplementary Table 6). 

These data and results are available in full at www.mscoloc.com.  
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DISCUSSION  

Our study supports the hypothesis that investigations on the transient transcriptome may 

contribute to clarify how the GWAS signals affect the etiopathogenesis of MS and possibly of other 

complex disorders. Specifically, we show that genomic regions coding for the transient 

transcriptome recently described in T cells,22 are significantly enriched for both MS-associated 

GWAS variants, as well as for DNA binding sites for protein ‘transducers’ of non-genetic signals, 

chosen among those plausibly associated to MS. The colocalization of GWAS intervals and some 

DNA-binding factors involved in MS etiology has already been reported,18, 20 and here we reinforce 

this premise further suggesting a model in which trRNA-coding regions are hotspots of 

convergence between genetic ad non-genetic factors of risk/protection for MS. Our analysis 

showed that these hotspots are shared by two or more of the four nuclear factors, that we 

arbitrarily chose, indicating possible additive pathogenic effects for MS development (see Fig. 3 

and Supplementary Table 6). 

In homeostatic conditions, it can be hypothesized that DNA sequences coding for trRNA are 

composed of regulatory regions where genetic variability and non-genetic signals interact to finely 

regulate the gene expression according to cell identity, developmental or adaptive states, and 

time-dependent stimuli. As a matter of fact, the high sequence variability of these regions and the 

strict time-dependence of their transcription could be instrumental to adaptative features; however, 

these same features make these regions susceptible to become dysfunctional or to be the targets 

of pathogenic interaction. In some instances, these detrimental interactions come from outside the 

cell, such as in the case of EBV interference with host transcription,35, 42 and the pathogenic 

consequences of vitamin D deficiency; in other cases, the dysfunction develops within the cell, 

such as the tumorigenic activity of AID in B cells.43, 44 

The mapping of transient transcripts by TT-seq approach fits very well with our results obtained 

from GWAS data for MS and other multifactorial conditions, showing a significant excess of 

intergenic and intronic regions (coding for eRNA, sincRNA, and asRNA), and having a distribution 

in DNA intervals mostly far off from transcription start sites (TSS; see Fig. 1). This is in agreement 

with recent evidence of regulatory DNA region markers which contains genetic variants for 
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complex disease or traits; indeed, a systematic framework of common coordinates for these 

markers showed that about half of them lie within introns and most localize away from the TSS.11 

To further support the relationship between trRNA and transcription of regulatory DNA regions, we 

matched a large dataset of enhancers and super-enhancers with MS-GWAS signals and DBR for 

VDR, EBNA2, EBNA3C and AID. The significant enrichment in cell lines and cell status coming 

from the hematopoietic lineages and the CNS-specific cell subsets corroborates data coming from 

recent reports such as the relevance of contextualizing and prioritizing the role of MS-associated 

GWAS signals.31, 32, 45, 46 Our analysis supports the pivotal regulatory role of enhancer transcription 

(i.e., a main component of transient transcriptome) was recently reported as not dispensable for 

gene expression at the immunoglobulin locus and for antibody class switch recombination,47 

though more research is needed to unravel such topic at a finer grain.  

Reports on dynamics of time-course data are a recent area of focus within the analysis of gene 

expression, specifically in immune cells. Although current studies use methods that investigate 

time points related to the stable transcriptome (RNA-seq performed with time spans of hours), they 

clearly show that gene expression dynamics may influence allele specificity, regulatory programs 

that seem to depend on autoimmune disease-associated loci, and different transcriptional profiles 

based on cell status after stimulation.48 A recent work showed that an IL2ra enhancer, which 

harbors autoimmunity risk variants and was one of the first MS-associated loci from GWAS, has no 

impact on the gene level expression. In times of gene activation, the same IL2ra enhancer would 

be delaying transcription in response to extracellular stimuli.7 The importance of the timing in the 

gene expression control emerges also from several studies implicating enhancers and super-

enhancers in the process of phase separation and formation of condensates. In this context, the 

transcriptional apparatus steps-up to drive robust genic responses.49-52 The overall process seems 

to be highly dynamic, with time spans of seconds or minutes, and hence compatible with the 

temporal features of the transient transcriptome, which could somehow act upstream for the 

formation of these phase-separated condensates.  

We suggest that studies on transient transcriptomes may integrate previous RNA-seq data in 

accounting for the interplay between genetic variability and non-genetic etiologic factors leading to 
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MS development. Components of a more-complex-than-anticipated regulation of gene expression 

could include transcriptional noise, transitory time-courses, erratic dynamics, and highly flexibility 

of some DNA regions, possibly oscillating between bistable states of enhancer and silencer.53 The 

availability of tools to map trRNA could further contribute to the development of studies on immune 

cells isolated from patients and matched controls, aimed at dissecting key aspects of the complex 

transcriptional response in MS. Our analysis provides a platform for future studies on transient 

transcriptome, which we support by making our data resource available at www.mscoloc.com. 

Moreover, new gene regulatory models may emerge from this approach in order to better evaluate 

the meaning of GWAS in complex traits and the impact of the enhancer transcription,47 which was 

recently reported as an ancient and conserved, yet flexible, genomic regulatory syntax.54 
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DATA ANALYSIS 

Analyses were performed in Python and R. A data freeze was applied on 3/1/2020. All GWAS data 

was gathered from the GWAS Catalog through its REST API;30, 37 about 1.5% of this data was 

filtered out as part of a QC process aimed at homogenizing legacy and more recent data. The MS 

GWAS regions were extracted from the overall GWAS Catalog data filtering by trait EFO_0003885. 

All Transcription Factor Binding Site regions (TFBS) were obtained from the ENCODE portal.38 All 

data was organized in various databases and data pipelines as detailed below. For SNP overlaps 

and region colocalization, we used LOLA39 and Fisher’s exact test with False Discovery Rate 

(Benjamini-Hochberg) to control for multiple testing; this was containerized and modularized to 

work on a parallel cluster environment. Resulting -log(p-value), support, and Odds Ratio (OR) were 

combined into a single score inspired by the harmonic mean40 and multi-objective optimization41 

with the formula below, where the spacing parameter kp was set to 10.0 and we consider all three 

contributors equally, setting therefore weights wi to 1.0. Statistical significance was taken at 

p<0.05. A modular and parallel data pipeline was created to: (i) readily generate and evaluate all 

experiments in the paper, (ii) manage and organize all data coming from various region databases 

(10,000+ regions), multiple ROIs (MS GWAS, EBNA2, EBNA3C, VDR,  AID, etc.), databases of 

vast background regions as they were populated with the data obtained from GWAS Catalog, 

ENCODE, and other data resources, (iii) provide overlaps and intersection among various data 

elements, annotate them with the original MS GWAS loci that generated the signal, and (iv) 

generate the overarching data resource available at www.mscoloc.com. 
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TABLES 
 
 

 

 

 

 

 

 

 

Table 1. Enrichment of MS-associated genetic variants in lists of T-cell transient transcripts extracted from Michel et al.22 The whole 

transcriptome list was split in two sub-lists depending on the transcripts’ half-life: short (<60’) and long (≥60’), respectively. Results are considered 

significant at p<0.05 and are highlighted in bold. 

  

List 
-log(p-value) p-value Odds Ratio Support 

List 

Size 

Harmonic 

Score 

Whole transient transcriptome 8.55 2.80 x 10-9 1.65 241 22126 41.3 

Short half-life transcripts 7.68 2.06 x 10 -8 1.63 209 20143 40.1 

Long half-life transcripts 1.05  0.09 1.29 35 1993 17.1 
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Table 2. Enrichment of MS-GWAS regions in lists of DNA binding sites of human and viral molecular transducers. For each molecular 

transducer, the number of DBRs is shown in brackets in the right-most column. Columns display the statistical analysis results derived from the 

colocalization analysis of the MS-associated genomic positions at different ranges of extension (±50,100,200 kb). Results are considered 

significant at p<0.05, corresponding to a -log(p)>1.301. Significant results are highlighted in bold. 

 

 

 

 ± 50 KB ± 100 KB ± 200 KB 

 -log 
(pValue) Odds Ratio Support Harmonic 

Score 
-log 

(pValue) Odds Ratio Support Harmonic 
Score 

-log 
(pValue) Odds Ratio Support Harmonic 

Score 

EBNA2 
(6880) 10.658 1.790 158 45.544 8.616 1.509 239 38.327 15.444 1.542 421 41.913 

 
EBNA3C 

(3335) 
0.614 1.108 55 11.765 1.647 1.227 109 20.956 3.448 1.294 199 28.098 

 
AID 

(4823) 
4.963 1.596 99 35.793 3.890 1.374 153 30.259 13.924 1.619 309 43.308 

 
VDR 

(23409) 
19.348 1.575 474 43.564 19.181 1.422 767 39.635 32.090 1.424 1329 40.872 
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Table 3. Colocalization of human and viral transducer DBRs and MS-GWAS positions in transient transcripts. MS-associated genomic 

positions were analyzed at different ranges of extension (±50,100, 200 kb). The transcript half-life is considered short if <60’ and long if ≥60’, 

respectively. Results are considered significant at p<0.05, corresponding to a -log(p)>1.301. Significant results are highlighted in bold.

  

 
± 50 KB ± 100 KB ± 200 KB 

  -log Odds 
Ratio Support Harmonic 

Score 
-log Odds 

Ratio Support Harmonic 
Score 

-log Odds 
Ratio Support Harmonic 

Score 
  

(pValue) (pValue) (pValue) 

EBNA2 Long half-life 0.023 0.478 3 0.644 0.062 0.717 8 1.708 1.879 1.531 33 24.679 

  Short half-life 6.163 1.920 69 43.011 3.241 1.433 95 29.496 8.945 1.610 189 40.642 

EBNA3C Long half-life 0.064 0.572 2 1.669 0.006 0.321 2 0.185 0.182 0.914 11 4.500 

  Short half-life 0.070 0.794 16 1.923 0.023 0.752 28 0.661 0.066 0.875 58 1.841 

AID Long half-life 0.089 0.682 3 2.303 0.283 1.024 8 6.477 0.051 0.726 11 1.432 

  Short half-life 1.769 1.465 37 23.531 1.346 1.267 59 19.367 3.954 1.442 119 31.416 

VDR Long half-life 1.737 1.502 32 23.571 0.845 1.187 45 14.646 2.315 1.322 97 25.031 

  Short half-life 2.221 1.239 152 23.734 2.336 1.181 267 23.460 11.478 1.367 548 36.561 
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FIGURES 

 

Figure 1. GWAS-associated SNP distribution across genomic partitions and their distance 

relative to the transcription starting site (TSS). Panel A) Multiple Sclerosis; B) Immune-

mediated conditions: Multiple Sclerosis, Rheumatoid Arthritis, Systemic Lupus Erythematosus, 

Crohn’s Disease, Ulcerative Colitis, Inflammatory Bowel Disease, Celiac Disease, Asthma, Type I 

Diabetes Mellitus; C) Non-immunological complex conditions: Type II Diabetes Mellitus, Aging, 

Obesity, Hypertension, Coronary Artery Disease, Bipolar Disorder. Supplementary table 2 include 

links to these traits in the GWAS catalog. 
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Figure 2. Enrichment of MS-associated SNPs in databases of regulatory elements, sorted by 

experiment/cell lines. X-axis shows the Odd Ratio, y-axis shows the -log(pValue); dot size is 

proportional to the support of each match, i.e., the number of hits resulting from the colocalization 

analysis. Color of each point is related to the Harmonic Score (HS), a comprehensive estimation of 

the relevance of hits, as derived by merging and balancing the OR, pValue and Support of each 

match. Thus, prioritized hits are represented by the darker dots that occupy the upper-right area of 

the chart. Labeled points have HS>40. 
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Figure 3. MS-GWAS regions in DNA binding sites of human and viral molecular transducers.  This Venn diagram shows the number of non-

redundant MS-associated SNPs (from the ROI, supplementary table 1) and their extensions at ±50, 100, 200 kb that colocalized within DNA binding 

regions of the molecular transducers AID, VDR, EBNA2, EBNA3C. For each transducer, SNPs are considered only once if present in more than one 

match. Intersections show the numbers of regions colocalizing with DBRs of multiple transducers. For instance: 8 regions colocalize with both EBNA2 

and EBNA3C DBRs, but not with AID nor VDR DBRs; 24 regions colocalize with all four DBRs 
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Figure 4. Schematic representation of the colocalization analysis. (ROI: Region of interest; DBR: DNA Binding Regions; ENCODE TFBS: 

Transcription Factor Binding Site). The figure shows the tracks we considered for the colocalization analyses. In brief, the ROI included the DBRs of 

MS-related viral and human transducers and was matched with MS-associated SNPs extended by 50, 100, and 200 kilobases that colocalize with 

regions plausibly coding for trRNAs (Database). As a control (Universe), we took from ENCODE the entire list of transcription factors binding sites. 

Results were considered significant if a colocalization was found across ROI and a Databases element without occurring in the Universe as a 

statistically significant match. 
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Figure 5. Colocalization analysis of DBRs for human and viral molecular transducers, MS-

associated SNPs and DNA regulatory regions derived from databases. (A) EBNA2; (B) 

EBNA3C; (C) AID; (D) VDR. The charts display results of all matches, i.e. with MS-associated 

SNPs and their extension at ±50, 100, 200 kb. X-axis shows the Odd Ratio, y-axis shows the 

log(pValue). Dot size is proportional to the support of each match, i.e. the number of hits resulting 

from each colocalization analysis. The color of each dot is related to the Harmonic Score (HS); 

Labels are shown starting at HS>40. 
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SUPPLEMENTARY FIGURES 

 

 

 

Supplementary Figure 1. Harmonic Score threshold defining the top colocalization hits. The 

plot shows all of colocalization matches, ranked by Harmonic Score (HS). The curve inflection 

point, highlighted with a red line, suggests a threshold for selecting the most relevant hits (i.e., 

those scoring at HS>40).   
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