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Abstract

Medical AI has tremendous potential to advance healthcare by supporting the evidence-based

practice of medicine, personalizing patient treatment, reducing costs, and improving provider

and patient experience. We argue that unlocking this potential requires a systematic way to

measure the performance of medical AI models on large-scale heterogeneous data. To meet

this need, we are building MedPerf, an open framework for benchmarking machine learning in

the medical domain. MedPerf will enable federated evaluation in which models are securely

distributed to different facilities for evaluation, thereby empowering healthcare organizations to

assess and verify the performance of AI models in an efficient and human-supervised process,

while prioritizing privacy. We describe the current challenges healthcare and AI communities

face, the need for an open platform, the design philosophy of MedPerf, its current

implementation status, and our roadmap. We call for researchers and organizations to join us in

creating the MedPerf open benchmarking platform.

Code availability: we made all code available under an Apache license at https://github.com/mlcommons

https://github.com/mlcommons


1 Introduction - Need for Wide Data Access and

Model Generalization
As medical AI has begun to transition from research to clinical care1–4, national agencies around

the world have started drafting regulatory frameworks to support this new class of interventions.

Examples include the US Food and Drug Administration

(https://www.fda.gov/medical-devices/digital-health-center-excellence), the European Medicines

Agency (https://www.ema.europa.eu/en/about-us/how-we-work/regulatory-science-strategy),

and the Central Drugs Standard Control Organisation in India5. A key point of agreement for all

regulatory agency efforts is a requirement for formal, large-scale validation of medical AI

models6–8. Widespread approval and adoption of medical AI models will thus require expansion

and diversification of clinical data sourced from multiple organizations. Furthermore, there are

emerging parallels between stages for approval for medical AI interventions and the regulatory

approval of small molecules or medical devices through clinical trials9–11.

Pioneering research in the medical field and elsewhere12,13 has demonstrated that using large

and diverse datasets during model training results in more accurate models. Such models are

also expected to be more generalizable to other clinical settings. Other studies have shown that

models trained with data from limited and specific clinical settings demonstrate bias toward

specific patient populations14–16, and such data biases can lead to models that appear promising

during development but have lower performance in wider deployment17,18. A given static model

may be susceptible to distribution shifts for the model’s input or the model’s target, or both19. For

example, input distributional shifts may occur when an algorithm is evaluated on a population

different than the one upon which it was trained on, when there are changes to local

demographics or disease prevalence, or as a result of software or hardware upgrades of

medical imaging equipment used for data acquisition. Similarly, distributional shifts may also

arise from variations in geographic insurance reimbursement and medical procedure trends, or

from new annotation or labeling guidelines. These issues, which are often intertwined with one

another and frequently result in performance degradation, can also hinder trust and acceptance

of AI among healthcare stakeholders, including clinicians, patients, insurers, and regulators.

We believe a new approach to leveraging diverse data can deliver consistent clinical and

business value to healthcare data owners, while creating adoption incentives through lower

https://www.fda.gov/medical-devices/digital-health-center-excellence
https://www.ema.europa.eu/en/about-us/how-we-work/regulatory-science-strategy


implementation cost and lower deployment risk6. Such an approach should allow collaborative

model training and evaluation on large, multi-institutional and representative datasets while

complying with privacy and regulatory requirements. However, the degree to which these

requirements can be met during collaborative training is still an open research question43.

Here we present MedPerf, an approach focused on broader data access during model

evaluation, which we believe will best support model generalization as well as improve clinician

and patient confidence. MedPerf was built upon the group’s experience leading and

disseminating efforts such as (i) the development of standardized benchmarking platforms (e.g.,

MLPerf for benchmarking machine learning training20 and inference21 across industries in a

pre-competitive space - https://mlcommons.org/#MLPerf); (ii) the implementation of federated

learning software frameworks (e.g., NVIDIA CLARA, Intel OpenFL22, and Flower by

Adap/University of Cambridge); (iii) the ideation and coordination of federated medical

challenges across dozens of clinical sites and research institutes (e.g., BraTS23 and FeTS24); as

well as (iv) other prominent medical AI and machine learning efforts spanning multiple countries

and healthcare specialties (e.g., oncology25 and COVID26). MedPerf should also illuminate cases

where better models are needed, increase adoption of existing generalizable models, and

incentivise further model development, data annotation, curation, and data access, while

preserving patient privacy. The development of this approach requires (a) consistent and

rigorous methodologies to evaluate performance of AI models for real-world use in a

standardized manner, (b) a technical approach that enables measuring model generalizability

across institutions, while maintaining data privacy and respecting model intellectual property,

and (c) a community of expert groups to employ the evaluation methodology and the technical

approach to define and operate mature performance benchmarks.

MedPerf aims to address these goals. MedPerf is an open-source framework designed to

develop and support benchmark reference implementations, respect data privacy, and support

model evaluation through formal generation of benchmarking working groups. MedPerf provides

the opportunity to set standards, best practices, and benchmarking for medical AI in a

pre-competitive space. The current list of contributors includes representatives of 18 companies,

13 universities, 6 hospitals, and 10 countries.

https://mlcommons.org/#MLPerf


2 Challenges: Risk, Cost and Uncertain Return
In this section, we discuss challenges to wider data access for AI training and evaluation in

healthcare. Convincing data owners to broaden data access is hindered by substantial

regulatory, legal, and public perception risks, high up-front costs, and uncertain financial return

on investment.

2.1 Risk

Sharing patient data presents three major classes of risk: liability, regulatory, and public

perception. Sharing patient data can expose providers to liability risk in multiple ways. Shared

data could be stolen or misused in a manner damaging to patients (e.g., to discriminate against

patients with certain conditions). Patient data are protected by complex regulations such as

HIPAA in the United States and GDPR in Europe that carry substantial penalties for violators.

The perception of risk is also heightened because AI is a relatively new paradigm where

application of existing regulations can be unclear. Lastly, even if data are shared legally and

used beneficially, people naturally value privacy, and sharing data without explicit consent could

lead to negative public perception27.

2.2 Cost

Sharing data requires up-front investment to turn raw data into a useful resource for AI. This

transformation involves multiple steps:

1. Data collection: Cohorts need to be identified and the corresponding data need to be

made accessible.

2. Transformation: Once accessible, data must be reformatted to a standardized

representation for each data type (e.g., DICOM28 for medical images) suitable for

subsequent steps.

3. Anonymization: Data are anonymized by removing identifying information and/or filtering

to comply with statistical and regulatory requirements (e.g., K anonymity29).

4. Labeling: For many AI tasks, data must be labeled (i.e., annotated) according to the task

(e.g., brain tumor segmentation). To ensure quality and performance, labeling should be

consistent across institutions. This step is expensive, highly human-dependent, and



error-prone, while carrying additional costs related to annotation correction, versioning,

and dataset maintenance30.

5. Review: Data need to be reviewed for regulatory, legal, and policy compliance, and

patients or patient groups need to be consulted for the design and perception of the use

case.

6. Licensing: Data must be licensed in a manner that fulfills business and/or scientific

interests while complying with existing regulations.

7. Sharing: Data must be physically shared with licensees, through complex legal

agreements, which may require secure transmission of large data volumes or the

creation of specially designed data enclaves.

Navigating these steps can be costly. The technical part of the process is also complex,

requiring a mix of medical, artificial intelligence, and software engineering skills. There are

multiple opportunities for error that may not be revealed until downstream consequences

emerge, necessitating careful validation at each step, sometimes with multiple iterations31.

2.3 Uncertain Return

Even if a data owner (e.g., a hospital) is willing to pay for these costs and mitigate these risks,

benefits can be unclear for financial or technical reasons. For example, if the development of an

AI-based solution is driven by the AI model builder instead of the data provider, the AI provider

may see a greater share of the eventual benefits than the data owner, even though the data

owner may incur a greater share of the risk.

From a technical perspective, it can be difficult to prove a model’s performance prior to

deployment. Current medical AI community challenge efforts (e.g., FeTS24, CheXpert32, BraTS33,

NLST34, CHAOS35, fastMRI36) have been invaluable for advancing research but lack the scope

to serve as real-world evaluation mechanisms in clinical settings. These challenges typically

focus on a single dataset and task and thus do not reflect the diversity (e.g., multi-modal and

multi-institutional) and complexity (e.g., different clinical and technical workflows) of real-world

use cases. Model training and evaluation on non-diverse datasets carries increased risk of

overfitting and the chance that even top-performing models will not generalize in real-world use

cases, where clinical data reside in multi-institutional, geographically distributed organizations

with significant differences across domains (i.e., domain shifts)14.



3 Proposed Solution: An Open Benchmarking

Platform using Federated Evaluation
Our goal is to increase the clinical impact of AI by leveraging more data across multiple facilities

to address the challenges described above. We are developing an open benchmarking platform

that combines a lower-risk, evaluation-focused approach without data sharing along with

appropriate infrastructure, technical support and organizational coordination. This approach can

reduce the risk and cost associated with data sharing while increasing the likelihood of business

and medical benefits provided by AI solutions. MedPerf should lead to wider adoption, more

efficacious and cost-effective clinical practice, and improve patient outcomes.

Our technical approach uses federated evaluation, a reduced-risk form of federated learning. At

its core, the aims of federated evaluation are to make sharing models with multiple data owners

  easy and reliable, to evaluate those models against data owners’ data in controlled settings, and

to aggregate and analyze evaluation metrics. Importantly, by limiting the goal to model

evaluation, and by aggregating only evaluation metrics, federated evaluation poses significantly

lower risk to patient privacy than collaborative model training, while also minimizing the risk37,38

of intellectual property theft and data misuse.

More specifically, our open platform for federated evaluation will provide a common,

open-source infrastructure for defining medical AI benchmarks and coordinating federated

evaluation of models against such benchmarks. We are building the infrastructure with best

practices to help align AI model owner/developers with data owners, through an active

community with a neutral organization at its core. We intend for our approach to be compatible

with, and to build upon, existing federated learning frameworks, rather than to compete with

them. Furthermore, as detailed below, we introduce steps that give data owners control over

what algorithms run on their data and allow them to confirm benchmarking results.

3.1 Risks are Mitigated by Focusing on Model Evaluation and

Trusted Groups

MedPerf addresses regulatory, liability, and public perception risks using a three-pronged

approach.



First, because the initial focus is on model evaluation instead of training, our federated

evaluation approach maximizes value without data leaving the possession of data owners,

either directly or accidentally leaked through results. We only need data owners to share

agreed-upon evaluation metrics (e.g., specificity), which are aggregated across participating

institutions before disseminating. This mitigates most regulatory, public perception, and legal

risk.

Second, Medperf retains human evaluators39 as a critical part of the proces: the MedPerf client

software requires a data-owner’s system administrator to approve all model evaluations and

result uploads, and automatically records transactions to support auditing. Moreover, to protect

against malicious or erroneous implementations, MedPerf requires that (a) all novel code has no

network access and restricted local file-system access, (b) evaluation algorithm implementations

are well-vetteed and common among benchmarks, and (c) all output (i.e., statistics) must be

explicitly approved by data owners before it is uploaded to the MedPerf platform.

Third, we leverage social trust: we enable benchmarks to be specified, developed, and

deployed publicly or within closed groups, such as provider networks with pre-existing trusted

relationships and business and legal contracts, and these closed-group benchmarks will be

prioritized during the pilot phase of deployment. We are developing the MedPerf infrastructure

through MLCommons, a non-profit with diverse membership and open-source practices, backed

by dozens of high-profile companies and institutions (https://mlcommons.org/en/#founders).

3.2 Costs are Reduced through Open Infrastructure and Best

Practices

We aim to reduce the costs of data sharing by developing open-source infrastructure and best

practices that enable infrastructure vendors, model owners, and data owners to collaboratively

build within a fast-growing ecosystem.

First, we provide community best practices for sharing models and data. For instance, we are

using the MLCube container for model sharing (see (https://mlcommons.org/en/mlcube/) for

concept introduction and practical examples, and (https://github.com/mlcommons/mlcube) for

the code repository). MLCube extends common container standards, such as Docker and

https://mlcommons.org/en/#founders
https://mlcommons.org/en/mlcube/
https://github.com/mlcommons/mlcube


Singularity, to offer a simple and consistent file system-based interface for other infrastructure to

train or make inferences using AI models (e.g., for testing harnesses or federated learning).

Additionally, deployment tools like Docker and Singularity enable hospital information

technology groups to evaluate the AI model code for security concerns using common methods

and tools.

Second, we are developing an open-source hub for medical AI benchmarks and a consistent

methodology for benchmarking. The hub will offer coordination among benchmark groups,

model developers, and data owners by providing a central model and data registry and by

storing results, but will not directly handle proprietary models or data, ensuring that these assets

remain in the hands of their owners. Instead, model and data owners will register hashes to

enable checking the integrity of their assets without exposing them to the platform. This method

will ensure that benchmark results can be compared to better establish promising technical

approaches.

3.3 Return on Investment: Increasing Certainty through Better

Model Evaluation

Our approach decreases the uncertainty of deploying AI models by enabling easy evaluation

against data held by multiple data owners. We enable model developers to indirectly interact

with data owners’ datasets and thus tap into a large, virtual test set. In doing so, we increase the

size of the test set and thereby reduce uncertainty of the evaluation - even if all the data are

from a single provider. More importantly, by enabling evaluation against data from multiple

providers, we can more effectively evaluate how the model will perform when deployed at

different facilities with diverse patient populations. And by providing multi-site performance

feedback to model developers, we increase the odds of successful model deployment.

Ultimately, demonstration that broad evaluation via federated evaluation is correlated with

clinical efficacy will further improve clinician and patient confidence and motivate additional data

owners to participate.

3.4 Building an On-Ramp to Federated Learning

We believe widespread adoption of federated evaluation will also spur wider adoption of

federated learning. Federated learning (FL) is a promising technology to enable development of



AI models by leveraging data from multiple institutions without directly sharing data40–42. While

FL enables model training without data sharing, data may leak through the model parameters

themselves, requiring additional mitigations43–45. Research and development of these mitigations

is ongoing, slowing the adoption of the technology. We believe that federated evaluation

provides concrete benefits while building industry familiarity with the technology needed for full

FL.

4 MedPerf Technical Approach
In this section, we describe the structure and functionality of an open benchmarking platform for

medical AI. We define a MedPerf benchmark in this context, discuss user roles required to

successfully operate a benchmark, and provide an overview of the operating workflow.

4.1 What is a Benchmark

For the purposes of our platform, a benchmark is a bundle of assets that enables quantitative

measurement of the performance of AI models for a specific clinical problem. A benchmark

consists of the following major components:

1. Specifications: precise definition of the clinical setting (e.g., problem or task and

specific patient population) on which trained AI models are to be evaluated, the labelling

methodology, and specific evaluation metrics.

2. Dataset Preparation: a process that prepares datasets for use in evaluation, and can

also test the prepared datasets for quality and compatibility.

3. Registered Datasets: a list of registered datasets prepared according to the benchmark

criteria and approved for evaluation use by their owners, e.g. patient data from multiple

facilities representing (as a whole) a diverse patient population.

4. Evaluation: a consistent implementation of the testing pipelines and evaluation metrics.

5. Reference Implementation: an example of a benchmark submission consisting of

example model code, the evaluation component above, and publicly available

de-identified or synthetic sample data.

6. Registered Models: a list of registered models to run in this benchmark.

7. Documentation: documents for understanding and using the benchmark.



Our platform uses the MLCube container for components such as Dataset Preparation,

Evaluation, and the Registered Models. MLCube containers are software containers (e.g.,

Docker and Singularity) with standard metadata and a consistent file-system level interface. By

using MLCube, the infrastructure software can easily interact with models implemented using

different approaches and/or frameworks, running on different hardware platforms, as well as

leverage common software tools for validating proper secure implementation practices (e.g.,

CIS Docker Benchmarks).

4.2 Benchmarking User Roles

We have identified four primary roles in operating an open benchmark platform, outlined in Table

1. In many cases, a single organization may participate in multiple roles, and multiple

organizations may share any given role. Beyond these roles, the long term success of medical

AI benchmarking requires organizations that create and adopt appropriate community standards

for interoperability such as Vendor Neutral Archives (VNA)46,47, DICOM28, OMOP48

(https://www.ohdsi.org/data-standardization/the-common-data-model/), PRISSMM49, and

HL7/FHIR50.

4.3 Benchmarking Workflow

Our open benchmarking platform uses the workflow depicted in Figure 1. To start, a benchmark

group registers the benchmark with the benchmarking platform (1) and then recruits data (2)

and model owners (3). The benchmarking platform sends model evaluation requests to the data

owners who approve and execute the evaluations, successively vetting and then pushing results

to the benchmarking platform (4). The benchmarking platform shares the results with

participants based on a policy specified by the benchmark group (5). Table 2 provides further

details about each workflow step.

5 MedPerf Roadmap
Ultimately, we aim to deliver an open platform that enables groups of researchers and

developers to use federated evaluation to provide high-confidence evidence of generalized

model performance to regulators, health care providers, and patients. In Table 3, we review

https://www.ohdsi.org/data-standardization/the-common-data-model/


necessary steps, scope of each step, and current progress towards developing this open

benchmarking platform.

6 Related Work
Our effort is inspired by several classes of related work. First, we adopt a federated approach to

data, focusing first on evaluation to lower the barriers to adoption. Second, we adopt the

standardized measurement approach to medical AI from organizations such as RSNA

(https://www.rsna.org), SIIM (https://siim.org), and Kaggle (https://www.kaggle.com), and we

generalize these efforts to a standard platform that can be applied to many problems rather than

focus on a specific one. Third, we leverage the open, community-driven approach to benchmark

development successfully employed to accelerate hardware development, through efforts such

as MLPerf (https://mlcommons.org) and SPEC (https://www.spec.org/benchmarks.html), and

apply it to the medical domain. Lastly, we push towards creating shared best practices for AI as

inspired by efforts like MLflow (https://mlflow.org) and Kubeflow (https://www.kubeflow.org) for AI

operations, as well as MONAI (https://monai.io) and GaNDLF (https://cbica.github.io/GaNDLF/)

for medical models.

7 Discussion and Conclusion
Our initial goal is to provide medical AI researchers with reproducible benchmarks based on

diverse patient populations to assist healthcare algorithm development. We believe such

benchmarks will increase development interest and solution quality, leading to patient benefit

and growing adoption. Furthermore, our platform will help advance research related to, but not

limited to, data utility, robustness to noisy annotations, and understanding of model failures. If a

critical mass of AI researchers adopts these benchmarks, healthcare decision makers will see

substantial benefits from aligning with this effort to increase benefit for their patient populations.

Ultimately, standardizing best practices and evaluation methods will lead to highly accurate

models that are acceptable to regulatory agencies and clinical experts, and create momentum

within patient advocacy groups. By bringing together these diverse groups, starting with AI

researchers and healthcare organizations, as well as building trust with clinicians, regulatory

authorities, and patient advocacy groups, we envision accelerating the adoption of AI in

healthcare and increased clinical benefits to patients and providers worldwide.

https://www.rsna.org/
https://siim.org/
https://www.kaggle.com
https://mlcommons.org
https://www.spec.org/benchmarks.html
https://mlflow.org
https://www.kubeflow.org
https://monai.io
https://cbica.github.io/GaNDLF/


However, we cannot achieve these benefits without the help of the technical and medical

community. We call for:

● Healthcare stakeholders to form the benchmark groups that define benchmark

specifications and oversee the analyses of their results.

● AI researchers to test this end-to-end platform and use it to create and validate their own

models across multiple institutions.

● Data owners (e.g., healthcare organizations) to register their data in the platform, again

while never sharing the data itself.

● Data model standardization efforts to enable collaboration between institutions, such as

the OMOP Common Data Model and VNA.

● Regulatory bodies to develop medical AI solution approval requirements that include

technically robust and standardized benchmarking.

We believe open efforts like MedPerf can drive innovation and bridge the gap between AI

research and real-world clinical impact. To achieve these benefits, there is a critical need for

broad collaboration, reproducible, standardized and open computation, and a passionate

community that spans academia, industry, and the clinical world. With MedPerf, we aspire to

bring such a community of stakeholders together as a critical step toward realizing the grand

potential of medical AI. We invite participation at https://mlcommons.org/medperf.

https://mlcommons.org/medperf


Figures and Tables

Figures

Figure 1. Benchmarking workflow, from benchmark registration to results. See Table 2 for

details of all workflow steps, 1 through 5.



Tables

Table 1. Benchmarking user roles and responsibilities.

Role name Role definition Role responsibilities

Benchmark
group

Benchmark groups include
regulatory bodies, groups of
experts (e.g., clinicians,
patient representative
groups), and data or model
owners wishing to drive
evaluation of their model or
data

● Authors the benchmark, manages all
benchmark assets, and may produce
some assets (e.g., dataset preparation)

● Recruits model owners and data owners,
makes an open benchmark for model
owners, and approves applicants

● Controls access to the aggregated
statistical results

Data owner Data owners may include
hospitals, medical practices,
research organizations, and
healthcare insurance
providers that own medical
data, register medical data,
and execute benchmark
requests

● Registers data with benchmarking
platform

● Performs data labelling
● Downloads and executes a data

preparation processor to prepare data
● Downloads and periodically uses platform

client to approve and serve requests and
to approve and upload results to or from
benchmarking platform

Model owner Model owners include AI
researchers and software
vendors that own a trained
medical AI model and want
to evaluate its performance.

● Registers model with benchmarking
platform

● Views results of their model on the
benchmark

● Has the option to approve sharing of
results of that benchmark with other
model/data owners or the public if allowed
by benchmark group

Platform
provider

Organizations like
MLCommons that operate a
platform that enables
benchmark groups to run
benchmarks by connecting
data owners with model
owners

● Manages user accounts and provides a
website for registering and discovering
benchmarks, datasets, models, and for
the overall workflow management

● Coordinates active benchmarks by
sending requests, aggregating results,
and managing result access



Table 2. Benchmarking workflow, steps, and interconnections with roles.

Workflow step Objective

1 Define and
register
benchmark

● The benchmarking process starts with establishing a benchmark group of
healthcare stakeholders: healthcare organizations, clinical experts, AI
researchers, and patient advocacy groups

● Benchmark group identifies a clinical problem where an effective AI-based
solution can have significant clinical impact

● Benchmark group registers the benchmark on the platform; and provides the
benchmark assets (see “What is a Benchmark”)

2 Recruit data
owners

● Benchmark group recruits data and model owners either by inviting trusted
parties or by making an open call for participation

● Dataset owners are recruited to maximize aggregate dataset size and
diversity on a global scale. Many benchmarking efforts may initially focus on
data providers with existing agreements

Prepare and
register data
sets

● In coordination with the benchmark group, dataset owners are responsible for
data preparation (i.e., extraction, preprocessing, labelling, reviewing for
legal/ethical compliance)

● Once the data is prepared and approved by the data owner, the dataset can
be registered with the benchmarking platform

3 Recruit
model
owners

● Model owners modify the benchmark reference implementation. To enable
consistent execution on data owner systems, the solutions are packaged
inside MLCube containers

● Model owners must conduct appropriate legal and ethical review prior to
submission of a solution for evaluation

Prepare and
register
models

● Once implemented by the model owner and approved by the benchmark
group, the model can be registered on the platform

4 Execute
benchmarks

● Once the benchmark, dataset, and models are registered to the
benchmarking platform, the platform notifies the data owners that models are
available for benchmarking

● The data owner runs a benchmarking client that downloads available models,
reviews and approves models for safety, then approves execution

● Once execution completes, the data owner reviews and approves upload of
the results to the benchmark platform

5 Release
results

● Benchmark results are aggregated by the benchmarking platform and shared
per the policy specified by the benchmark group



Table 3. MedPerf roadmap stages, scopes, and corresponding details for each stage.

Roadmap stage Scope - Status Details

Design An open benchmarking
platform called MedPerf -
COMPLETE

MedPerf is supported by the non-profit
MLCommons Association. MLCommons
brings together engineers and academics
globally to make AI better for all; they have
already created and host the MLPerf
benchmark suites for AI performance (as
measured by speed-up, electrical
consumption, and other metrics)

Implementation
of sample
benchmarks
to drive
development

Computed tomography (CT)
of the abdomen -
IN PROGRESS

We chose these motivating problems
because they (1) affect a large, global
patient population and represent a
substantial opportunity for clinical impact,
(2) have high-potential AI solutions and
(3), have public datasets and open-source
models in development

Chest x-ray -
IN PROGRESS

Brain tumor segmentation -
IN PROGRESS

Implementation
of platform

Phase 1: Single-system
proof-of-concept -
IN PROGRESS

Demonstrate technical approach using
public data and open-source models on a
single system that simulates multiple
systems (which eliminates platform
incompatibility and communication issues)

Phase 2: Distributed
proof-of-concept - PLANNED

Demonstrate technical approach using
public data and open source models
communicating across the internet on
multiple systems belonging to potential
data and model owners

Deployment of
platform

Phase 1: Early deployment -
PLANNED

Launch 2-3 benchmarks targeting
high-impact medical problems

Phase 2: Wide-scale
deployment - PLANNED

Multiple benchmarking efforts
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