8 research outputs found

    Sources of superoxide/H2O2 during mitochondrial proline oxidation

    Get PDF
    p53 Inducible gene 6 (PIG6) encodes mitochondrial proline dehydrogenase (PRODH) and is up-regulated several fold upon p53 activation. Proline dehydrogenase is proposed to generate radicals that contribute to cancer cell apoptosis. However, there are at least 10 mitochondrial sites that can produce superoxide and/or H2O2, and it is unclear whether proline dehydrogenase generates these species directly, or instead drives production by other sites. Amongst six cancer cell lines, ZR75-30 human breast cancer cells had the highest basal proline dehydrogenase levels, and mitochondria isolated from ZR75-30 cells consumed oxygen and produced H2O2 with proline as sole substrate. Insects use proline oxidation to fuel flight, and mitochondria isolated from Drosophila melanogaster were even more active with proline as sole substrate than ZR75-30 mitochondria. Using mitochondria from these two models we identified the sites involved in formation of superoxide/H2O2 during proline oxidation. In mitochondria from Drosophila the main sites were respiratory complexes I and II. In mitochondria from ZR75-30 breast cancer cells the main sites were complex I and the oxoglutarate dehydrogenase complex. Even with combinations of substrates and respiratory chain inhibitors designed to minimize the contributions of other sites and maximize any superoxide/H2O2 production from proline dehydrogenase itself, there was no significant direct contribution of proline dehydrogenase to the observed H2O2 production. Thus proline oxidation by proline dehydrogenase drives superoxide/H2O2 production, but it does so mainly or exclusively by providing anaplerotic carbon for other mitochondrial dehydrogenases and not by producing superoxide/H2O2 directly

    Brown adipose tissue thermogenic adaptation requires Nrf1-mediated proteasomal activity

    No full text
    Objective Brown adipose tissue (BAT) generates heat in response to cold, and low BAT activity has been linked to obesity. However, recent studies were inconclusive as to whether BAT is involved in diet‐induced thermogenesis and mitigates weight gain from prolonged overeating. Therefore, this study investigated whether BAT activity is related to metabolic adaptation arising from 8 weeks of overfeeding in humans. Methods Fourteen men (aged 24 ± 3 years, BMI 24.5 ± 1.6 kg/m2) were overfed by 40% for 8 weeks. Before and after, energy expenditure and metabolic adaptation were measured by whole‐room respiratory calorimetry. A marker of BAT activity was measured using infrared imaging of the supraclavicular BAT depot. Results At the end of 8 weeks of overfeeding, metabolic adaptation—defined as the percent increase in sleeping energy expenditure beyond that expected from weight gain—rose from −0.9 ± 3.9% to 4.7 ± 5.6% (P = 0.001). However, BAT thermal activity was unchanged (P = 0.81). Moreover, BAT thermal activity did not correlate with the degree of metabolic adaptation (P = 0.32) or with the change in body weight (P = 0.51). Conclusions BAT thermal activity does not change in response to overfeeding, nor does it correlate with adaptive thermogenesis. Our data suggest that BAT does not mediate metabolic adaptation to overeating in humans

    Dependence of Brown Adipose Tissue Function on CD36-Mediated Coenzyme Q Uptake

    Get PDF
    Brown adipose tissue (BAT) possesses the inherent ability to dissipate metabolic energy as heat through uncoupled mitochondrial respiration. An essential component of the mitochondrial electron transport chain is coenzyme Q (CoQ). While cells synthesize CoQ mostly endogenously, exogenous supplementation with CoQ has been successful as a therapy for patients with CoQ deficiency. However, which tissues depend on exogenous CoQ uptake as well as the mechanism by which CoQ is taken up by cells and the role of this process in BAT function are not well understood. Here, we report that the scavenger receptor CD36 drives the uptake of CoQ by BAT and is required for normal BAT function. BAT from mice lacking CD36 displays CoQ deficiency, impaired CoQ uptake, hypertrophy, altered lipid metabolism, mitochondrial dysfunction, and defective nonshivering thermogenesis. Together, these data reveal an important new role for the systemic transport of CoQ to BAT and its function in thermogenesis
    corecore