782 research outputs found

    The three-dimensional roughness of stylolites in limestones: roughness analysis and possible genetic implications

    Get PDF
    International audienceStylolites are dynamic roughly planar surfaces formed by pressure solution of blocks of rocks into each other. The three-dimensional geometry of 12 bedding-parallel stylolites in several limestones was measured using laser and mechanical profilometers, and statistical characteristics of the surfaces were calculated. All the stylolites analyzed turn out to have self-affine fractal roughness with a well-characterized crossover length scale separating two self-affine regimes. Strikingly, this characteristic length scale falls within a very narrow range for all the stylolites studied, regardless of the microstructure sizes. To explain the data, we propose a continuous phenomenological model that accounts for the development of the measured roughness from an initially flat surface. The model postulates that the complex interface morphology is the result of competition between the long-range elastic redistribution of local stress fluctuations, which roughen the surface, and surface tension forces along the interface, which smooth it. The model accounts for the geometrical variability of stylolite surfaces and predicts the dependence of the crossover length scale on the mechanical properties of the rock

    Experimental microstylolites in quartz and modelling of natural stylolitic structures

    Get PDF
    International audienceExperimental microstylolites have been observed at stressed contacts between quartz grains loaded for several weeks in the presence of an aqueous silica solution, at 350 8C and 50 MPa of differential stress. Stereoscopic analysis of pairs of SEM images yielded a digital elevation model of the surface of the microstylolites. Fourier analyses of these microstylolites reveal a self-affine roughness (with a roughness exponent H of 1.2). Coupled with observations of close interactions between dissolution pits and stylolitic peaks, these data illustrate a possible mechanism for stylolite formation. The complex geometry of stylolite surfaces is imposed by the interplay between the development of dissolution peaks in preferential locations (fast dissolution pits) and the mechanical properties of the solid-fluid-solid interfaces. Simple mechanical modeling expresses the crucial competition that could rule the development of microstylolites: (i) a stress-related process, modeled in terms of the stiffness of springs that activate the heterogeneous dissolution rates of the solid interface, promotes the deflection. In parallel, (ii) the strength of the solid interface, modeled in terms of the stiffness of a membrane, is equivalent to a surface tension that limits the deflection and opposes its development. The modeling produces stylolitic surfaces with characteristic geometries varying from conical to columnar when both the effect of dissolution-rate heterogeneity and the strength properties of the rock are taken into account. A self-affine roughness exponent (Hz1.2) measured on modeled surfaces is comparable with natural stylolites at small length scale and experimental microstylolites

    Experimental stylolites in quartz and modeled application to natural structures.

    Get PDF
    Experimental stylolites have been observed at stressed contacts between quartz grains loaded for a period of several months in presence of aqueous silica solution, at 350°C under 50 MPa of differential stress. Stereoscopic analysis of pairs of SEM images, processed in the same way as earth-surface elevation data gives the stylolites topography. Coupled with observations of closed interactions between dissolution pits and stylolitic peaks, these data illuminate the mechanism of stylolite formation. The complex geometry of stylolite surfaces is imposed by the interplay between the development of dissolution peaks in favored locations (fast dissolution pits) and the mechanical properties of the solid-fluid-solid interfaces. Simple mechanical modeling expresses the crucial competition that could rule the development of stylolites: (i) a stress related process (modeled as the stiffness of springs (N/m3) activates the heterogeneous dissolution rates of the solid interface that promotes the deflection. In parallel, (ii) the strength of the solid interface, modeled as the stiffness of a membrane (N/m) and equivalent to a surface tension) limits the deflection and is opposed to its development. The modeling produces stylolitic surfaces with characteristic geometries that vary from conical to columnar shaped stylolites when both the effect of dissolution-rate heterogeneity and the strength properties of the rock are included

    A linear stability analysis of compressible hybrid lattice Boltzmann methods

    Full text link
    An original spectral study of the compressible hybrid lattice Boltzmann method (HLBM) on standard lattice is proposed. In this framework, the mass and momentum equations are addressed using the lattice Boltzmann method (LBM), while finite difference (FD) schemes solve an energy equation. Both systems are coupled with each other thanks to an ideal gas equation of state. This work aims at answering some questions regarding the numerical stability of such models, which strongly depends on the choice of numerical parameters. To this extent, several one- and two-dimensional HLBM classes based on different energy variables, formulation (primitive or conservative), collision terms and numerical schemes are scrutinized. Once appropriate corrective terms introduced, it is shown that all continuous HLBM classes recover the Navier-Stokes Fourier behavior in the linear approximation. However, striking differences arise between HLBM classes when their discrete counterparts are analysed. Multiple instability mechanisms arising at relatively high Mach number are pointed out and two exhaustive stabilization strategies are introduced: (1) decreasing the time step by changing the reference temperature TrefT_{ref} and (2) introducing a controllable numerical dissipation σ\sigma via the collision operator. A complete parametric study reveals that only HLBM classes based on the primitive and conservative entropy equations are found usable for compressible applications. Finally, an innovative study of the macroscopic modal composition of the entropy classes is conducted. Through this study, two original phenomena, referred to as shear-to-entropy and entropy-to-shear transfers, are highlighted and confirmed on standard two-dimensional test cases.Comment: 49 pages, 23 figure

    Single-contact pressure solution creep on calcite monocrystals

    Get PDF
    Pressure solution creep rates and interface structures have been measured by two methods on calcite single crystals. In the first kind of experiments, calcite monocrystals were indented at 40°C for six weeks using ceramic indenters under stresses in the 50-200 MPa range in a saturated solution of calcite and in a calcite-saturated aqueous solution of NH4Cl. The deformation (depth of the hole below the indenter) is measured ex-situ at the end of the experiment. In the second type of experiment, calcite monocrystals were indented by spherical glass indenters for 200 hours under stresses in the 0-100 MPa range at room temperature in a saturated aqueous solution of calcite. The displacement of the indenter was continuously recorded using a specially constructed differential dilatometer. The experiments conducted in a calcite-saturated aqueous solution of NH4Cl show an enhanced indentation rate owing to the fairly high solubility of calcite in this solution. In contrast, the experiments conducted in a calcite-saturated aqueous solution show moderate indentation rate and the dry control experiments did not show any measurable deformation. The rate of calcite indentation is found to be inversely proportional to the indenter diameter, thus indicating that the process is diffusion-controlled. The microcracks in the dissolution region under the indenter dramatically enhance the rate of calcite indentation by a significant reduction of the distance of solute transport in the trapped fluid phase. This result indicates that care should be taken in extrapolating the kinetic data of pressure solution creep from one mineral to another

    Experimental pressure solution compaction of synthetic halite/calcite aggregates.

    Get PDF
    Experimental observations are reported of weakening of sediment-like aggregates by addition of hard particles. Sieved mixtures of calcite and halite grains are experimentally compacted in drained pressure cells in the presence of a saturated aqueous solution. The individual halite grains deform easily by pressure solution creep whereas calcite grains act as hard objects and resist compaction. The fastest rate of compaction of the mixed aggregate is not obtained for a 100% halite aggregate but for a content of halite grains between 45% and 75%. We propose that this unusual compaction behavior reflects the competition between two mechanisms at the grain scale: intergranular pressure solution at grain contacts and grain boundary healing between halite grains that prevent further compaction

    Quelle place l’enseignement a-t-il parmi les motivations et projets professionnels des Ă©tudiants en Education physique?

    Full text link
    peer reviewedIl est commun de considĂ©rer que les Ă©tudes en Ă©ducation physique conduisent exclusivement Ă  une carriĂšre dans l’enseignement. Toutefois, les recherches portant sur les aspirations professionnelles des Ă©tudiants entrant dans ce type de formation sont relativement rares et il n’est pas possible actuellement de dĂ©terminer si tous les Ă©tudiants possĂšdent rĂ©ellement cette vocation «pĂ©dagogique». En CommunautĂ© française de Belgique, la prĂ©sence et le succĂšs de 12 Ă©tablissements de formation en Ă©ducation physique a incitĂ© le MinistĂšre de l’Enseignement supĂ©rieur et de la Recherche scientifique Ă  commander une Ă©tude portant sur les motivations des jeunes qui s’engagent dans cette orientation de formation

    Human collagen Krox up-regulates type I collagen expression in normal and scleroderma fibroblasts through interaction with Sp1 and Sp3 transcription factors.

    Get PDF
    Despite several investigations, the transcriptional mechanisms that regulate the expression of both type I collagen genes (COL1A1 and COL1A2) in either physiological or pathological situations, such as scleroderma, are not completely known. We have investigated the role of hc-Krox transcription factor on type I collagen expression by human dermal fibroblasts. hc-Krox exerted a stimulating effect on type I collagen protein synthesis and enhanced the corresponding mRNA steady-state levels of COL1A1 and COL1A2 in foreskin fibroblasts (FF), adult normal fibroblasts (ANF), and scleroderma fibroblasts (SF). Forced hc-Krox expression was found to up-regulate COL1A1 transcription through a -112/-61-bp sequence in FF, ANF, and SF. Knockdown of hc-Krox by short interfering RNA and decoy strategies confirmed the transactivating effect of hc-Krox and decreased substantially COL1A1 transcription levels in all fibro-blast types. The -112/-61-bp sequence bound specifically hc-Krox but also Sp1 and CBF. Attempts to elucidate the potential interactions between hc-Krox, Sp1, and Sp3 revealed that all of them co-immunoprecipitate from FF cellular extracts when a c-Krox antibody was used and bind to the COL1A1 promoter in chromatin immunoprecipitation assays. Moreover, hc-Krox DNA binding activity to its COL1A1-responsive element is increased in SF, cells producing higher amounts of type I collagen compared with ANF and FF. These data suggest that the regulation of COL1A1 gene transcription in human dermal fibroblasts involves a complex machinery that implicates at least three transcription proteins, hc-Krox, Sp1, and Sp3, which could act in concert to up-regulate COL1A1 transcriptional activity and provide evidence for a pro-fibrotic role of hc-Krox
    • 

    corecore