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émanant des établissements d’enseignement et de
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Stylolites are dynamic roughly planar surfaces formed by pressure solution of blocks of rocks
into each other. The three-dimensional geometry of twelve bedding-parallel stylolites in several
limestones was measured using laser and mechanical profilometers, and statistical characteristics of
the surfaces were calculated. All the stylolites analyzed turn out to have self-affine fractal roughness
with a well characterized crossover length scale separating two self-affine regimes. Strikingly, this
characteristic length scale falls within a very narrow range for all the stylolites studied, regardless of
the microstructure sizes. To explain the data we propose a continuous phenomenological model that
accounts for the development of the measured roughness from an initially flat surface. The model
postulates that the complex interface morphology is the result of competition between the long range
elastic redistribution of local stress fluctuations, which roughen the surface, and surface tension forces
along the interface, which smooth it. The model accounts for the geometrical variability of stylolite
surfaces and predicts the dependence of the crossover length scale on the mechanical properties of
the rock.

PACS numbers:

I. INTRODUCTION

Stylolites are partings between blocks of rock which
exhibit complex mutual column-and-socket interdigita-
tion [see [15], p. 340]. They are planar, extend laterally
for up to tens of meters, may cut across bedding, and
often occur in sets, in carbonate and other essentially
monomineralic rocks. They play an important role in
compaction and creep processes [4], and therefore on the
rheological properties of the upper crust.

The works of [1, 8, 11, 14, 15, 23, 39, 49] and many
more leave little doubt that stylolites are the planar, disk-
like seams left by self-localized pressure solution that [16]
viewed as “anticracks”. So much rock may be pressure-
dissolved during stylolites formation that stylolitization
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may considerably change the shape and reduce the thick-
ness of a sedimentary body [4, 15]. Stylolites seams are
often highlighted by a thin concentration of darker mate-
rial, usually assumed to be insoluble material but at least
in some cases shown to be authigenic [33, 50]. Cataclas-
tic deformation and microtransform faulting contribute
to the specific shape of the column and sockets interdig-
itations [9, 12, 34].

[5] attempted to account for the topography of stylo-
lites by invoking a non-uniform distribution of clay parti-
cles in the carbonate rock and water flow parallel to the
stylolitic plane, but the stylolitic surfaces he predicted
apparently have a ridge-and-groove morphology rather
than the observed column-and-socket form. [18] carried
out a stability analysis for a stressed pressure-solution
surface, which was assumed to be free, on which a sinu-
soidal perturbation is imposed. They concluded that the
competition between surface tension and elastic strain
energy may render the surface unstable to the growth
of perturbations of certain wavelengths and may account
for the formation of the roughness of stylolites. This is a
stress-dissolution instability, known to physicists as the
Asaro-Tiller-Grinfeld instability [2, 22, 27, 36]. In an-



other paper [17], they explained why stylolites form by
dissolving more on one side than on the other. The lo-
cal variations in elastic strain energy can induce a small
asymmetry of the dissolution front that tends to grow
with time.

The usual way of studying stylolites is by examining
them in two-dimensional polished cross-sections perpen-
dicular to the plane of the stylolite [26, 48]. [48] has
studied a three-dimensional image of a stylolite using a
series of parallel cross-sections perpendicular to the plane
of the stylolite. However, only 20 cross-sections spaced
by about 0.5 mm were used, and this is not sufficient to
construct a high resolution three-dimensional “map” of
the surface.

The objective of the work described in this paper is
to quantify the intricate three-dimensional topography
of such stylolites. For this purpose we collected twelve
sedimentary bed-parallel stylolites in limestones. For all
of them, we managed to separate the two interdigitated
rock bodies without damaging the peaks, from carefully
sawed 20x20x10 cm blocks of limestones. Thus the full
three-dimensional structure of the stylolite interface was
revealed, and we quantified their exposed topography us-
ing optical and mechanical profilometers. In addition
we propose a phenomenological model for surface growth
and roughening that reproduces the statistical properties
of stylolite surfaces.

II. ANALYSIS OF THE STYLOLITES

A. Origin and chemical characterization of the
stylolites

Decimeter-scale limestone samples from the
Chartreuse, Vercors, and Jura mountains and the
Burgundy area (France) that have undergone styloliti-
zation were collected in newly open quarries. The age
of the limestones varied between Jurassic and Miocene.
We selected stylolites that could be separated to reveal
the two complementary rough surfaces, see figures 1, 2.

Thin sections show that the limestones are recrystal-
lized and that the grain size is below the resolution of
the optical microscope. For each stylolite we analyzed
two kinds of sample by X-ray fluorescence; the rock itself
and the insoluble particles (mainly clays) trapped within
the interface. The stylolite interfaces were washed with
distiled water and the clay suspensions were collected di-
rectly from the solution after filtration, evaporation and
drying at 70C. A small volume in each sample was cut
and these rock samples were crushed and sieved. Then
all the samples were heated at 1200C, to remove organic
matter, before lithium borate pellets were produced for
X-ray fluorescence analysis.

The analysis indicated that the stylolites are enriched
in aluminum, iron, titanium, and phosphorus compared
with the bulk rock (see Table II), whereas the interface
is depleted in calcium indicating preferential dissolution

along the stylolite. However, the concentration ratios
between elements are not conserved in the stylolite and in
the rock. This may have several explanations including:

1. The analyzed elements may be shared by a num-
ber minerals that have different solubilities. This is
commonly associated with pressure solution cleav-
age differentiation [20].

2. The stylolites may have nucleated on preexisting
surfaces, e. g. a clay seam, that had a different
composition from the ambient.

3. A fluid may have percolated along the stylolites
and removed some elements as dissolved or colloidal
solids. This is consistent with the analysis of au-
thigenic muscovite in stylolites by [50].

To estimate the extent of dissolution, we selected the
elements associated with minerals that have the smallest
solubilities, and were therefore least influenced by the
circulating fluid. The concentration ratios of such ele-
ments between the stylolite interfacial material and the
bulk rock provides a qualitative indication of the amount
of dissolution that has occurred. The stylolite interface
residues are 5 to 20 times more concentrated in Ti, Fe,
and P than the bulk limestone (see Figure 3). Since the
interface is 0.5 to 5 mm thick, the thickness of the layer
of limestone that has dissolved is estimated to lie in the
range 2.5 to 100 mm. This value is comparable with
the maximum height of the stylolite peaks [10]. Because
there could have been contamination by a fluid, this anal-
ysis gives only a qualitative estimate of the amount of
dissolution.

In the following we assume that fluid circulation is a
late event during stylolite formation and that fluids-rock
interactions associated with this circulation did not mod-
ify the statistical properties of the stylolite surfaces. This
assumption is relevant in the sense that we show below
that all the stylolites have the same statistical properties,
independent of their geological history and geographic
origin.

B. Statistical properties of stylolite topography

We have determined the scaling behavior of the various
stylolites with optical and mechanical profilometers (Ta-
ble I, and Figure 4). Topographic height fields (see Fig-
ure 5) were measured with two different laser profilome-
ters (one at Rennes University, France, with a horizontal
resolution of 125 μm, one at Ecole Normale Supérieure
de Paris, France (ENS) with a resolution down to 30 μm)
and one mechanical profilometer (ENS) with a resolution
of 25 μm. Between 4 and 600x600 parallel profilometer
transects were conducted on each surface. These profiles
are then used to create topographic maps of each surface.

The mechanical profilometer measurements were per-
formed with a sapphire needle with a 25 μm tip radius,
which moves up and down and stops when it touches



the surface of the stylolite. Between successive measure-
ments, the stylolite surface is displaced laterally accord-
ing to a prescribed pattern so that the height of the sur-
face can be measured at an array of lateral positions in
the plane of the stylolite. The vertical resolution of this
device is 3 μm. The time required for a single measure-
ment is approximately 2 seconds, several times longer
than for laser measurement. Consequently, we performed
only four mechanical profilometer measurements along
linear profiles, for the purpose of comparison with laser
profilometer data.

The laser measurements were performed by directing
a laser beam onto the surface. The distance between the
laser and the stylolite is measured via the time of flight
of the reflected beam (Rennes University) or by triangu-
lation (ENS). The former has a vertical precision of 30
μm and the latter of 3 μm. The surface height field was
constructed by displacing the sample by horizontal incre-
ments of 30 to 125 μm along horizontal parallel profiles.
Each profile was separated by the same 30 to 125 μm
increments. The precision of the horizontal motions is 12
μm for the Rennes instrument and below 1 μm for the
ENS instrument.

If a stylolite is approximated by a rough surface that
fluctuates spatially about a plane, then the amplitude
of the roughness can be defined as the rms (root-mean-
square) distance between the rough surface and the av-
erage plane defined from a least square fit. This quantity
characterizes the mean amplitude of the peaks. It might
depend on the size of the sampled area and it is defined
as

Arms(S) =

√√√√ 1
N

N∑
i=1

(zi − z̄)2, (1)

where S is the sampled area of the stylolite surface, zi is
the height of the ith point on the area and z̄ is the mean
height of the surface, which is discretized at N points.

Two types of statistical properties were calculated to
characterize the roughness of the stylolites: the rms
roughness amplitude Arms of each surface for a given
sampled area and the roughness exponent (or Hurst ex-
ponent)H of the topographic profiles which characterizes
the sensitivity of the roughness amplitude with respect
to the size of the sampled area: Arms ∝ SH/2. The
Hurst exponent, H , could be determined from the de-
pendence of Arms on S, however, we determined H us-
ing the Fourier power spectrum (FS) [31] and the average
wavelet coefficient technique (AWC) [24, 32, 46].

Once the topography of a surface was acquired we car-
ried out a pre-treatment of the raw data before calculat-
ing statistical properties of the profiles and the surfaces.
The mean plane of each surface was first calculated by
two-dimensional mean-squared regression and subtracted
from the initial data. This removes any planar tilt of the
surface and sets the mean height to zero.

C. Fourier analysis

The aim is to quantify the scaling behavior and demon-
strate that the surface remains unchanged under the
transformation Δx → λΔx, Δz → λHΔz. The Hurst
exponent H can be estimated from the Fourier power
spectrum which has a power law form with an exponent
of (−1−2H) for a 1-dimensional self-affine profile [3, 31].

A set of parallel cuts was taken through the digitized
surface in a plane perpendicular to the plane of the stylo-
lite to obtain a series of parallel profiles. For each profile,
the Fourier power spectrum P (k), i. e. the square of the
modulus of the Fourier transform, was calculated as a
function of the wave-number k. Then the spectrum of
the whole surface was calculated by stacking all the 1D
Fourier transforms to reduce the noise associated with
individual profiles. For each profile of length L contain-
ing N increments, the spatial frequencies range between
1/L and the Nyquist frequency N/2L (i.e. the recipro-
cal of the interval between data points). In this range
of frequencies, fall-of problems at short wavelengths are
avoided. This method was applied to both the laser and
mechanical profilometer data obtained from the same sty-
lolite (Figure 6, top). For both data sets, the Fourier
analysis give the same results, the only difference is that
the mechanical data (4 profiles on the surface Sjuras1)
are more noisy than the laser data (up to 1024 profiles
on the same surface). These results indicate that the
roughness statistics are independent of the measurement
device.

The Fourier spectra show that the roughness of the
stylolite surfaces can be described in terms of two self-
affine regimes. For small wave-numbers k (or large length
scales), the slope of the Fourier spectrum scales as k−2,
whereas the scaling exponent is −3.2 for large wave-
numbers (Figure 6, top). A well-defined characteristic
wave-number k∗ characterizes the transition between the
two regimes. For this example, the characteristic length
is close to 1 mm. To summarize, P (k) ∝ k−3.2 for k < k∗,
and P (k) ∝ k−2 for k > k∗. This scaling behavior can
be related to the Hurst exponent of the surface. A self-
affine surface is defined by a single scaling behavior, and
P (k) ∝ k−(1+2H), where H is the Hurst exponent [31].
This corresponds to H1 ≈ 0.5 and H2 ≈ 1.1 for small
and large wave-numbers respectively. For an asymptotic
self-affine fractal the Hurst exponent H lies in the range
0 ≤ H ≤ 1. Effective values greater than unity are a con-
sequence of proximity to crossovers and a limited range
of scaling. An effective value of 1.1 is consistent with
an asymptotic value of unity (a Hurst exponent of 1.0
for an underlying process that is not influenced by other
processes).

D. Wavelet analysis

The Fourier analysis results were verified by using an
independent method, based on the average wavelet co-



efficient (AWC) [24, 32, 46]. This methods consists of
wavelet transforming each one-dimensional trace h(x, y =
const) where the transform is defined as:

Wa,b =
1√
a

∫ +∞

−∞
dx ψ

(
x− b

a

)
|h(x, y = const)|, (2)

where ψ is the wavelet. Then the wavelet coefficients
are averaged over the translation factor b for each length
scale a.

Wa = 〈Wa,b〉b . (3)

If the trace is self affine, the wavelet transform verifies
statistically for any λ as: W [h(λx)]a,b = λHWa,b. Ac-
cordingly the averaged wavelet coefficients scale as:

Wa ∝ aH+1/2 . (4)

A wide range of wavelet functions can be used. For
a simple and efficient implementation we chose the
Daubechies wavelet of order 12 as suggested in [46].

The two scaling regimes separated by a well-defined
length scale a∗ are also revealed using this method (see
Figure 6, bottom). The values obtained for the Hurst
exponents in the two scaling regimes and the crossover
length were essentially the same using the data obtained
from the laser device and the mechanical profilometer,
confirming the results obtained from Fourier analysis.

In addition, we have evaluated the directional morpho-
logical isotropy of the stylolites. Two sets of profiles were
extracted from the topographic maps along perpendic-
ular directions and the wavelet analysis was performed
in these two directions. For all the stylolites, the AWC
spectrum in both directions were similar (Figure 7). For
a single stylolite surface this test would not be enough
to prove the isotropy of a surface, since the axes of the
anisotropy, if it exists, could be aligned at an angle of
45 degrees with respect to the directions along which
the surface profiles were measured and analyzed. Under
these conditions the same results would be obtained for
both sets of profiles. However for all the surfaces that we
have measured, the perpendicular directions along which
the profiles were measured were chosen randomly, and no
anisotropy could be detected. This behavior is common
for the population of stylolites that we analyzed provid-
ing strong evidence for the isotropy of sedimentary sty-
lolite surfaces.

E. A characteristic length scale

The most striking result of this investigation is that the
scaling behavior of all the stylolites that we investigated
turned out to consist of two regimes, each characterized
by a straight line on a log-log scale in figures 6 and 8,
intersecting at a length a∗ of 0.18 to a few millimeters.

The crossover length a∗ is well defined for each stylo-
lite (Table I). This parameter can be used to scale the

surface roughness and collapse all the data onto a single
curve (Figure 8). The crossover is a transition between
short and long-scale processes, and the crossover length
can be thought of as the point at which dominance by one
process given way to dominance by the other. We pro-
pose below that on short length scales, with an effective
Hurst exponent close to 1.1, capillary effects dominate
and at large length scale, with a Hurst exponent close to
0.5, the stylolite geometry is controlled by stress redistri-
bution around the random heterogeneities of the rock.

F. Discussion

Usually, the scaling properties of rough surfaces are
studied by means of the scale dependent roughness δh(l)
that measures the height difference between two points
of the surface separated by a distance l. The scaling
shows up as a functional dependence 〈δh(l)〉 ∝ lH , where
〈· · ·〉 indicates an average over a large number of measure-
ments. H is called the Hurst exponent. This exponent
can be obtained by computing the Fourier power spec-
tra P (k) of the profiles along the surface as a function
of the wave-numbers k = 1/l. The scaling behavior of
self-affine profiles is characterized by a power-law depen-
dence P (k) = k−(1+2H) [31]. By using the AWC analysis,
the scaling is characterized by a power-law dependence
of the spectra P (k) = kH+1/2. These two methods are
independent, and together they provide a measure of the
consistency of the statistical methods used to calculate
the Hurst exponent. Our analysis indicates that stylolites
are characterized by two self-affine regimes separated by
a well-defined characteristic length scale a∗. For small
wave-numbers (i. e. large length scales) the Hurst expo-
nent H1 ≈ 0.5 and for large wave-numbers (i. e. small
length scales), H2 ≈ 1.1. The latter value is similar to
that obtained for experimental microstylolites by [21].
All the stylolites that we analyzed showed this universal
behavior.

There is other evidence that stylolites have a self-affine
fractal structure. For example, [13] measured a Hurst
exponent of 0.65 using a cut through a limestone stylo-
lite. The Hurst exponent was determined by using the
Fourier power spectrum. Although the power spectrum
was quite noisy, it could be represented by a power law,
corresponding to H ≈ 0.65 over almost two wave-number
decades corresponding to a two decade range of length
scales. On 1D profiles, [26] obtained a Hurst exponent
close to 0.55 over 4.5 orders of magnitude for a stylo-
lite from Calcare Massiccio, Italy, and 0.74 and 0.57 for
two other lithologies. However they did not observe a
cross-over length-scale.

The values that we obtained for the Hurst exponent
are significantly different from the quasi-universal value
of about 0.75 measured for fracture surfaces in a wide
variety of brittle materials [28–30, 40, 43] except for that
obtained for sandstone fractures [7]. However, it is also
clear that stylolite surfaces differ substantially from frac-



tures in brittle materials in having a far greater surface
area relative to the area of the flat surface surface about
which the stylolite surfaces fluctuate. This difference can
be described through the magnitude of the topothesy,
which is defined as the length scale over which the slope
of the topography is equal to unity [47]. Stylolites have
a topothesy that is much larger than that of fractures.

A qualitative correlation was observed between the am-
plitude of the roughness and the characteristic crossover
length a∗. In Figure 8, top, the surfaces are sorted ac-
cording to the amplitude of the peaks: black curves cor-
respond to smooth stylolites, with a low Arms roughness,
gray curves correspond to stylolites with well-defined
peaks, and dark curves with open symbols are intermedi-
ate. The stylolites that have, visually, the highest peaks
have a characteristic length a∗ of the order of 1-3 mm,
whereas ’smooth’ stylolites have a characteristic length
a∗ that is less than 1 mm (Table I).

III. MODELING STYLOLITE SURFACE
GROWTH

A stylolitic surface can be regarded as the current dy-
namic interface during the mutual pressure solution of
two blocks of rock. It is a 2+1-dimensional object that
has developed through time. The 2+1-dimensional no-
tation is used for a surface that fluctuates in a third di-
mension about a two-dimensional plane. Stylolites can
be described in terms of the propagation of a growth
front that leaves behind a structure that does not change,
or the growth of fluctuations about a stationary plane.
These two scenarios are equivalent if the propagation
of a growth front is described in a coordinate system
that moves with the front. We study this development
through a phenomenological approach used widely in
physics to quantify various rough surface growth pro-
cesses. We propose a simple 1+1-dimensional model
that accounts for capillary and elastic forces and provides
some insights into the roughening of an isolated stylolite.

A. Driving forces and transport mechanism

Previous works on stylolites indicate that three main
ingredients must be included in a realistic model of sty-
lolites formation [18, 33, 38]: the first is the effect of
stress that enhances dissolution in regions of the rock in
which the stress is higher; the second is the transport of
solutes via a fluid phase; and the third ingredient is a
surface smoothing process driven by variation of the cur-
vature related to chemical potential variations along the
stylolite surface.

A local increase of stress increases the free energy and
also the solubility of the solid. This is the well-known
Gibbs effect of stress on free-energy [25, 51]. The Gibbs
effect is used to explain pressure solution patterns [42].
The relative rates of dissolution of the two solid surfaces

drives the interface evolution. This process depends on
the relationship between the chemical potential and the
energy [27]:

Δμ(x, t) = Ω(ue + γκ), (5)

where Δμ is the local chemical potential difference be-
tween the solid and the fluid phase along the interface, Ω
is the molecular volume of the dissolving solid, ue is the
elastic energy per unit volume in the solid, γ is the inter-
facial energy, and κ is the local curvature of the interface.
A more complete approach to the mechanical modeling
would take into account the full complexity of the nor-
mal and tangential stresses effects, including elastic and
plastic strain, cataclastic deformation etc. Because of
the lack of detailed information and understanding of the
complete role played by stress in stylolite formation, we
consider that the term ue, the elastic energy, represents a
simplified description of the effects of stress in the model.
It is a strong assumption, however we consider that the
long range elastic distribution of local stress fluctuations
can be approximated by this single parameter.

The evolution of the interface is mediated by the dif-
fusion process. Once material has dissolved, solutes are
transported in a fluid phase. If the diffusion is in the
bulk, the interface velocity vn is directly proportional to
the chemical potential difference: vn = mΔμ where m is
a mobility. In the case of diffusion that is confined to an
interface, the interface velocity is given by vn = Di∇2Δμ,
where Di is an interfacial diffusion coefficient [27]. [18]
proposed that in a stylolite diffusion occurs along the
solid-fluid interface. However, a study of thin sections of
North Sea sandstones indicated that dissolved silica pre-
cipitates locally in the bulk rock around the stylolite [37].
In this case, transport by diffusion occurs in the volume
of rock surrounding the stylolite. We assume this second
scenario.

[18] have developed a linear stability analysis of sty-
lolite formation. Along the stylolite, the differences in
solubility induces heterogeneities in the rates of dissolu-
tion. This effect modifies the stress along the surface.
The net result of this feedback between stress and dis-
solution is the amplification of stress heterogeneities and
the formation of wavy structures on the dissolving sur-
face. The nonhydrostatically stressed solid can partially
release its energy by a morphological instability at the in-
terface [35]. This process is known for homogeneous ma-
terials as the Asaro-Tiller-Grinfeld instability (see [27],
for a complete review of the process), and it leads to the
amplification of perturbations on an initial noisy surface.
When the surface roughness develops, the local curva-
ture varies. This modifies the chemical potential for a
given half-space below the stylolitic surface: “bumps”
have higher chemical potential whereas “valleys” have a
lower chemical potentials. This produces a smoothing of
the surface, which competes with the amplification due
to stress effects modeled as variations of elastic energy.



B. Langevin model for stylolite growth

For many processes in which an initially flat surface
or interface evolves into a rough surface, the evolution of
the surface can be described by a stochastic differential
equation, or Langevin equation, of the form:

∂z(x, t)/∂t = n(x, t) + f(z(x, t)). (6)

Here, z(x, t) is the height of the surface, at lateral posi-
tion x (the position along a line in a 1 + 1-dimensional
model or position in a plane in a 2+1-dimensional model)
at time t. The height is measured in a moving coordi-
nate system with respect to a plane that is parallel to the
initially flat surface.

The term n(x, t) represents the effects of stochastic
processes, which may have a variety of origins. The
essence of this equation is that the growth rate ∂z/∂t
at any point depends only on the local properties of the
surface and the effects of fluctuations (noise). The func-
tion f(z(x, t)) depends on the local slope and curvature
of the surface and it describes the physics of the growth
process.

In many surface growth equations, the noise is “an-
nealed” noise and this noise drives the evolution of the
interface [31]. The simplest model for the noise n(x, t) is
a spatially uncorrelated Gaussian distribution with

〈n(x, t)〉 = 0 (7)

and

〈n(x, t)n(x′, t′)〉 = 2Dδ(x − x′)δ(t− t′), (8)

where D is a diffusion coefficient. For this annealed noise
the fluctuations n(x, t) have no time correlations.

In the case of stylolite growth, the dominant contri-
bution to the noise n(x, t) is directly related to the spa-
tial heterogeneities in the material, which can be con-
sidered as local variations of the chemical or mechani-
cal properties of the solid. Under these conditions, the
growth equation can be written in the form of equation
6 where n(x, z(x, t)) is the time independent quenched
noise. This quenched noise is not a consequence of the
noisy dynamics of the system. Instead, the noise is a
consequence of the essentially time independent hetero-
geneities embedded in the system, and the time depen-
dence of this noise is a consequence of the propagation
of the interface through the heterogeneous medium. The
addition of material heterogeneities introduces a signifi-
cant difference from the Asaro-Tiller-Grinfeld instability.

To develop a model for stylolite evolution, we take into
account two competing processes: the effects of the stress
through the elastic energy, which amplifies perturbations,
and the effects of the interfacial energy, which tends to
smooth the surface. We shall consider the situation after
localization of the strain along an interface. Dissolution
is supposed to take place along an existing flat disconti-
nuity. The general equation for surface growth driven by

quenched noise (Equation 6) is replaced by:

1
m

dz

dt
= Ω

2(1 − ν2)
E

σ2
0

(
1 +

1
π
PV

∫ ∞

−∞

z(x′) − z(x)
(x′ − x)2

dx′
)

+ Ωγ
d2z

dx2
+ η(x, z(x)), (9)

where σ0 is the average effective external stress, which
can also take into account the effects of fluid pressure, E
is the effective Young’s modulus, ν is an effective Poisson
coefficient. PV stands for the Principal Value. This is
the integration between −∞ and +∞ without the con-
tribution at 0, where the integral diverges. Equation 9
includes three driving forces: the long range elastic in-
teractions, the local capillary effects, which have a sta-
bilizing influence, and the quenched noise fluctuations.
The Ωγ d2z

dx2 term arises because there is a greater den-
sity of active zone sites in concave parts of the surface
than there are in convex parts of the surface, this ac-
counts for surface tension effects. The non-linear term
Ω 2(1−ν2)

E σ2
0(1 + 1

πPV
∫ ∞
−∞

z(x′)−z(x)
(x′−x)2 dx′) arises because

the height of the stylolite depends on the stress evalu-
ated over the entire surface. This is a non-local term,
which takes into account long-range stress effects. This
term can be calculated using the mathematics of Green’s
functions [6, 19].

We have solved numerically Equation 9 for the 1 + 1-
dimensional case using an event driven algorithm [44, 45].
This model consists of a sequence of “growth events” but
the number of events is not necessarily linearly related
to elapsed time in the physical system. The periodic
interface is discretized in 2048 elements. At the start
of a simulation, the interface is flat. At each step, the
cell that exhibits the maximum speed dz/dt according to
Equation 9 is located. This cell is then advanced by a ran-
dom amount dh uniformly sampled from the range [0, 1].
The local fluctuation of the chemical potential η(x, z(x))
is updated from a prescribed distribution chosen to be
uniform over the range [0, 1]. In this model the inter-
face always advances into the most unstable cell. After a
transient regime, we observed that the width of a rough
interface approaches a stationary value. The result is a
rough profile that can be compared with that measured
on a real stylolite (Figure 9).

The profiles were analyzed and the results were av-
eraged over 500 simulations. A well-defined crossover
length, which is controlled by the balance between the
magnitude of the elastic and capillary effects separates
two self-affine regimes (Figure 10).

C. Discussion

As expected, the mechanical regime with an exponent
H1 ≈ 0.4, is dominant at small wave-numbers (large
length scales). At large wave-numbers (small length
scales), the capillary regime dominates with an effective
Hurst exponent close to H2 ≈ 1.2. The Hurst exponents



obtained from the model are slightly different from the
values obtained by analyzing real stylolites.

This might be explained by the dimension difference:
The natural surfaces are 2+1-dimensional interfaces, but
the model is 1+1-dimensional. This is a fundamental
difference, and in most cases, for most growth models, the
characteristic exponents depend on the dimensionality of
the growing surface and the dimensionality of the space
in which the surface is growing.

The main success of the model is its reproduction
of two self-affine scaling regimes separated by a rapid
crossover. It gives some physical understanding of the
crossover and a possible link with physical parameters.

[27] performed a linear stability analysis of the compe-
tition between mechanical and capillary forces in the case
of a stressed solid in equilibrium with its melt and showed
that there is a characteristic length scale lc for which the
effects of elastic stress and surface tension cancel. This
specific length scale can be extracted from Equation 9
and is equal to

lc = Eγ/2σ0
2(1 − ν2), (10)

where E is the Young’s modulus of the solid, σ0 is the
normal stress, γ is the solid-fluid interfacial energy, and
ν is the Poisson coefficient of the solid. Typical values for
limestones are E = 8 ·1010 N/m2, ν = 0.25, and γ = 0.27
J/m2 for a water-calcite surface. As we obtain lc ≈ 1
mm, we can evaluate the required stress: σ0 ≈ 4.8MPa.
This is consistent with the values of differential stresses
in the first two kilometers of the crust.

The crossover length scale lc is controlled by the bal-
ance between the elastic forces on the interface and the
“capillary”forces. We propose that lc corresponds to the
characteristic length a∗ measured on the stylolites. Since
lc depends on the stress σ0 at which the stylolite devel-
oped, it provides a way to estimate the value of a “fossil”
stress in the solid. However the stress effects would have
to be integrated with all its complexity to quantify this
fossil stress. This is a challenging problem.

On small length scales, the Hurst exponent is close to
1.1. This value is similar that obtained from simulations
of quasi-static pinning of fluid interfaces [41]. In their
model, the front of a propagating interface can be pinned
by impurities with random strengths. The propagation
front is shown to develop a self-affine profile, with an ef-
fective Hurst exponent close to 1.2. In their calculations,
this exponent is characteristic of a process dominated by
capillary effects.

IV. CONCLUSIONS

We have studied sedimentary stylolites in limestones
that can be separated to reveal the delicate three-
dimensional geometry of their two sides. Laser and me-
chanical topographical measurements indicate that stylo-
lite surface have two scaling regimes separated by a well-
defined characteristic length scale: at small wavelengths,

the effective Hurst exponent is equal to 1.1 whereas at
long wavelengths it is close to 0.5. The crossover be-
tween the two scaling behaviors defines the characteris-
tic scale a∗ of the surface. We propose that a∗ char-
acterizes the competition between two effects: capillary
forces that tend to smooth the surface and stress pertur-
bations related to the heterogeneity of the rock that am-
plify instabilities. We propose that the crossover length
a∗ provides a measure of a fossil stress along the interface.
To proceed further in this analysis would require addi-
tional measurements of properties that might influence
the growth of stylolites including the grain size, temper-
ature, age, mineral content, porosity, and permeability.
The effects of these variables on the crossover length a∗

and other aspects of the stylolite morphology would need
to be determined. This would be a challenging task be-
cause these quantities cannot be independently varied.
A combination of physical and geological understanding
may lead the idea that one or more of these parame-
ters have a dominant influence on stylolite formation. It
would be necessary to study a large number of stylolite
surfaces collected from a variety of geological settings to
test such an idea.

We have proposed a simple 1+1-dimensional phe-
nomenological model of surface growth based on the two
main ingredients of stylolite formation: strain energy and
interface energetics. By propagation of a surface under
the influence of these two components in a noisy (hetero-
geneous) solid, we can reproduce the crossover between
two scaling behaviors with power-law exponents similar
to those measured using stylolites. This is a promising
approach, and the next step will be to solve the problem
in three-dimensions, i. e. the propagation of a 2+1-
dimensional interface in three-dimensional space.

Another characteristics of stylolites is the collective be-
havior of an ensemble of stylolites in a rock. They tend
to anastomose and cut across each other. We did not
investigate this problem in this study. However, it poses
an additional challenge that must be met to develop a
comprehensive understanding of the formation of stylo-
lite patterns.
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Stylolite Origin Rock dx (µm) Arms (mm) length scale a∗ (mm)

S0-8 Jura mountains light yellow limestone 125 0.54 0.77
S1sup Chartreuse mountains gray limestone 125 1.48 *
S32 Chartreuse mountains yellow limestone 125 0.87 *
S3B Chartreuse mountains yellow limestone 125 2.32 0.18
S6 Chartreuse mountains gray limestone 125 1.56 *
S11B Burgungy clastic limestone 30 2.49 0.62
S11C Burgungy clastic limestone 30 1.68 0.6
S12A Vercors Mountains light gray limestone 80 2.86 2.24
S13A Burgundy pink-red limestone 30 0.26 0.47
S15A Burgundy yellow-red limestone 60 0.61 0.43
S10A Burgundy limestone 30 0.83 0.43
Sjuras1 Jura mountains light yellow limestone 60 0.90 0.96

TABLE I: List of the stylolite surfaces analyzed. The reso-
lution in the plane of the stylolite dx, the root mean square
roughness (Arms) and the characteristic length a∗ are given.
An asterisk in the right hand column indicates a surface with
noisy laser data, which was not quantitatively analyzed.

Stylolite sample Fe2O3 (%) T iO2 (%) P205 (%) CaO (%) SiO2 (%) Al2O3 (%)

S3B whole rock 0.78 0.07 0.05 83.2 3.89 1.53
S3B interface 3.33 0.73 0.27 23.7 53.6 9.77
S1sup whole rock 0.74 0.10 0.06 82.5 8.03 1.41
S1sup interface 2.05 0.61 0.21 16.5 67.9 7.13
S13A whole rock 0.46 0.04 0.04 92.6 0.01 0.08
S13A interface 2.87 0.31 0.23 68.6 18.57 4.81
S11 whole rock 0.61 0.04 0.01 92.1 0 1.17
S11 interface 12.69 0.89 0.12 26.2 39.2 13.13

TABLE II: X-ray fluorescence analysis of the whole rock and
the content of the stylolite interfaces.



FIG. 1: Examples of stylolites at different scales in limestones
showing the variety of morphologies and peaks amplitudes.
top) Sample S12A, with a roughness of up to 5 millimeters.
Sample S0-8 with a roughness of up to 2 millimeter. bottom)
Measured profiles of four representative stylolites we have an-
alyzed. These stylolites are ordered according to increasing
roughness from bottom to top.



FIG. 2: Scanning electron microscope image of a stylolite sur-
face from the Jura area on different scales (sample SJuras1).
a) View of the rough surface. b) View of an individual peak
on a scale that is about ten times smaller. c-d) Small scale
roughness on a scale that is about 20 times smaller than that
in part a).

FIG. 3: X-ray fluorescence analysis of the bulk rock and the
stylolite interface for four different samples.



FIG. 4: Measurements of the stylolites surfaces with a laser
profilometer. Two different lasers were used. One in Rennes
University (a), with a step increment of 125 µm (surface S6)
and one at the Ecole Normale Supérieure Paris (b), with in-
crements of 30 µm (surface S10A). (see Table I).



FIG. 5: Surface S1-sup measured with a laser (Part a). In
Part b, the height field obtained from the laser profilometry
is shown. The Fourier and wavelet statistics were performed
on such data.



FIG. 6: a) Fourier analysis of the surface Sjuras1 measured
with a mechanical profilometer and a laser device. b) Wavelet
analysis of the same data.



FIG. 7: Wavelet spectrum of the stylolite Sjuras1 measured
with a laser profilometer. The statistics were calculated
for profiles in two directions (two sets of perpendicular cuts
through the surface in planes perpendicular to the plane of
the stylolite).



FIG. 8: a) Wavelet analysis of all the stylolite surfaces
studied. b) A data collapse illustrating that W (a) =
W (a∗)f(a/a∗), where f(x) is a scaling function common to
all of the stylolites.



FIG. 9: Lower curve: Measured profile in the X direction
on the stylolite S12. Upper curve: Result of one simulation
according to equation 9.

FIG. 10: Wavelet analysis of 1D surface roughening accord-
ing to Equation 9. The competition between stress effects and
surface tension leads to two scaling regimes. For small wave-
lengths, H1 = 1.2 whereas for large wavelengths H2 = 0.4.


