20 research outputs found
Enhancing Energy Production with Exascale HPC Methods
High Performance Computing (HPC) resources have become the key actor for achieving more ambitious challenges in many disciplines. In this step beyond, an explosion on the available parallelism and the use of special purpose
processors are crucial. With such a goal, the HPC4E project applies new exascale HPC techniques to energy industry simulations, customizing them if necessary, and going beyond the state-of-the-art in the required HPC exascale
simulations for different energy sources. In this paper, a general overview of these methods is presented as well as some specific preliminary results.The research leading to these results has received funding from the European Union's Horizon 2020 Programme (2014-2020) under the HPC4E Project (www.hpc4e.eu), grant agreement n° 689772, the Spanish Ministry of
Economy and Competitiveness under the CODEC2 project (TIN2015-63562-R), and
from the Brazilian Ministry of Science, Technology and Innovation through Rede
Nacional de Pesquisa (RNP). Computer time on Endeavour cluster is provided by the
Intel Corporation, which enabled us to obtain the presented experimental results in
uncertainty quantification in seismic imagingPostprint (author's final draft
Applying future Exascale HPC methodologies in the energy sector
The appliance of new exascale HPC techniques to energy industry simulations is absolutely needed nowadays. In this sense, the common procedure is to customize these techniques to the specific energy sector they are of interest in order to go beyond the state-of-the-art in the required HPC exascale simulations. With this aim, the HPC4E project is developing new exascale methodologies to three different energy sources that are the present and the future of energy: wind energy production and design, efficient combustion systems for biomass-derived fuels (biogas), and exploration geophysics for hydrocarbon reservoirs. In this work, the general exascale advances proposed as part of HPC4E and its outcome to specific results in different domains are presented.The research leading to these results has received funding from the European Union's Horizon 2020 Programme (2014-2020) under the HPC4E Project (www.hpc4e.eu), grant agreement n° 689772, the Spanish Ministry of Economy and Competitiveness under the CODEC2 project (TIN2015-63562-R), and from the Brazilian Ministry of Science, Technology and Innovation through Rede Nacional de Pesquisa (RNP). Computer time on Endeavour cluster is provided by the Intel Corporation, which enabled us to obtain the presented experimental results in uncertainty quantification in seismic imaging.Postprint (author's final draft
Sexual dimorphism in the human olfactory bulb: females have more neurons and glial cells than males.
Sex differences in the human olfactory function reportedly exist for olfactory sensitivity, odorant identification and memory, and tasks in which odors are rated based on psychological features such as familiarity, intensity, pleasantness, and others. Which might be the neural bases for these behavioral differences? The number of cells in olfactory regions, and especially the number of neurons, may represent a more accurate indicator of the neural machinery than volume or weight, but besides gross volume measures of the human olfactory bulb, no systematic study of sex differences in the absolute number of cells has yet been undertaken. In this work, we investigate a possible sexual dimorphism in the olfactory bulb, by quantifying postmortem material from 7 men and 11 women (ages 55-94 years) with the isotropic fractionator, an unbiased and accurate method to estimate absolute cell numbers in brain regions. Female bulbs weighed 0.132 g in average, while male bulbs weighed 0.137 g, a non-significant difference; however, the total number of cells was 16.2 million in females, and 9.2 million in males, a significant difference of 43.2%. The number of neurons in females reached 6.9 million, being no more than 3.5 million in males, a difference of 49.3%. The number of non-neuronal cells also proved higher in women than in men: 9.3 million and 5.7 million, respectively, a significant difference of 38.7%. The same differences remained when corrected for mass. Results demonstrate a sex-related difference in the absolute number of total, neuronal and non-neuronal cells, favoring women by 40-50%. It is conceivable that these differences in quantitative cellularity may have functional impact, albeit difficult to infer how exactly this would be, without knowing the specific circuits cells make. However, the reported advantage of women as compared to men may stimulate future work on sex dimorphism of synaptic microcircuitry in the olfactory bulb
Enzyme and Microbial Technology
Texto completo. Acesso restrito. p. 141-150Ionic liquids (ILs) have evolved as a new type of non-aqueous solvents for biocatalysis, mainly due to
their unique and tunable physical properties. A number of recent review papers have described a variety
of enzymatic reactions conducted in IL solutions, on the other hand, to improve the enzymeâs activity
and stability in ILs; major methods being explored include the enzyme immobilization (on solid support,
solâgel, etc.), protic ionic liquids used as an additive process. The immobilization of the lipase
from Burkholderia cepacia by the solâgel technique using protic ionic liquids (PIL) as additives to protect
against inactivation of the lipase due to release of alcohol and shrinkage of the gel during the solâgel
process was investigated in this study. The influence of various factors such as the length of the alkyl
chain of protic ionic liquids (monoethanolamine-based) and a concentration range between 0.5 and 3.0%
(w/v) were evaluated. The resulting hydrophobic matrices and immobilized lipases were characterised
with regard to specific surface area, adsorptionâdesorption isotherms, pore volume (Vp) and size (dp)
according to nitrogen adsorption and scanning electron microscopy (SEM), physico-chemical properties
(thermogravimetric â TG, differential scanning calorimetry â DSC and Fourier transform infrared spectroscopy
â FTIR) and the potential for ethyl ester and emulsifier production. The total activity yields (Ya)
for matrices of immobilized lipase employing protic ionic liquids as additives always resulted in higher
values compared with the sample absent the protic ionic liquids, which represents 35-fold increase in
recovery of enzymatic activity using the more hydrophobic protic ionic liquids. Compared with arrays of
the immobilized biocatalyst without additive, in general, the immobilized biocatalyst in the presence of
protic ionic liquids showed increased values of surface area (143â245 m2 gâ1) and pore size (19â38 AË ).
Immobilization with protic ionic liquids also favoured reduced mass loss according to TG curves (always
less than 42.9%) when compared to the immobilized matrix without protic ionic liquids (45.1%), except
for the sample containing 3.0% protic ionic liquids (46.5%), verified by thermogravimetric analysis. Ionic
liquids containing a more hydrophobic alkyl group in the cationic moiety were beneficial for recovery of
the activity of the immobilized lipase. The physico-chemical characterization confirmed the presence of
the enzyme and its immobilized derivatives obtained in this study by identifying the presence of amino
groups, and profiling enthalpy changes of mass loss.Salvado
Protic ionic liquid as additive on lipase immobilization using silica sol-gel
Ionic liquids (ILs) have evolved as a new type of non-aqueous solvents for biocatalysis, mainly due to their unique and tunable physical properties. A number of recent review papers have described a variety of enzymatic reactions conducted in IL solutions, on the other hand, to improve the enzyme's activity and stability in ILs; major methods being explored include the enzyme immobilization (on solid support, sol-gel, etc.), protic ionic liquids used as an additive process. The immobilization of the lipase from Burkholderia cepacia by the sol-gel technique using protic ionic liquids (PIL) as additives to protect against inactivation of the lipase due to release of alcohol and shrinkage of the gel during the sol-gel process was investigated in this study. The influence of various factors such as the length of the alkyl chain of protic ionic liquids (monoethanolamine-based) and a concentration range between 0.5 and 3.0% (w/v) were evaluated. The resulting hydrophobic matrices and immobilized lipases were characterised with regard to specific surface area, adsorption-desorption isotherms, pore volume (V-p) and size (d(p)) according to nitrogen adsorption and scanning electron microscopy (SEM), physico-chemical properties (thermogravimetric - TG, differential scanning calorimetry - DSC and Fourier transform infrared spectroscopy - FTIR) and the potential for ethyl ester and emulsifier production. The total activity yields (Y-a) for matrices of immobilized lipase employing protic ionic liquids as additives always resulted in higher values compared with the sample absent the protic ionic liquids, which represents 35-fold increase in recovery of enzymatic activity using the more hydrophobic protic ionic liquids. Compared with arrays of the immobilized biocatalyst without additive, in general, the immobilized biocatalyst in the presence of protic ionic liquids showed increased values of surface area (143-245 m(2) g(-1)) and pore size (19-38 angstrom). Immobilization with protic ionic liquids also favoured reduced mass loss according to TG curves (always less than 42.9%) when compared to the immobilized matrix without protic ionic liquids (45.1%), except for the sample containing 3.0% protic ionic liquids (46.5%), verified by thermogravimetric analysis. Ionic liquids containing a more hydrophobic alkyl group in the cationic moiety were beneficial for recovery of the activity of the immobilized lipase. The physico-chemical characterization confirmed the presence of the enzyme and its immobilized derivatives obtained in this study by identifying the presence of amino groups, and profiling enthalpy changes of mass loss. (c) 2013 Elsevier Inc. All rights reserved
Applying future Exascale HPC methodologies in the energy sector
The appliance of new exascale HPC techniques to energy industry simulations is absolutely needed nowadays. In this sense, the common procedure is to customize these techniques to the specific energy sector they are of interest in order to go beyond the state-of-the-art in the required HPC exascale simulations. With this aim, the HPC4E project is developing new exascale methodologies to three different energy sources that are the present and the future of energy: wind energy production and design, efficient combustion systems for biomass-derived fuels (biogas), and exploration geophysics for hydrocarbon reservoirs. In this work, the general exascale advances proposed as part of HPC4E and its outcome to specific results in different domains are presented.The research leading to these results has received funding from the European Union's Horizon 2020 Programme (2014-2020) under the HPC4E Project (www.hpc4e.eu), grant agreement n° 689772, the Spanish Ministry of Economy and Competitiveness under the CODEC2 project (TIN2015-63562-R), and from the Brazilian Ministry of Science, Technology and Innovation through Rede Nacional de Pesquisa (RNP). Computer time on Endeavour cluster is provided by the Intel Corporation, which enabled us to obtain the presented experimental results in uncertainty quantification in seismic imaging
Enhancing Energy Production with Exascale HPC Methods
High Performance Computing (HPC) resources have become the key actor for achieving more ambitious challenges in many disciplines. In this step beyond, an explosion on the available parallelism and the use of special purpose
processors are crucial. With such a goal, the HPC4E project applies new exascale HPC techniques to energy industry simulations, customizing them if necessary, and going beyond the state-of-the-art in the required HPC exascale
simulations for different energy sources. In this paper, a general overview of these methods is presented as well as some specific preliminary results.The research leading to these results has received funding from the European Union's Horizon 2020 Programme (2014-2020) under the HPC4E Project (www.hpc4e.eu), grant agreement n° 689772, the Spanish Ministry of
Economy and Competitiveness under the CODEC2 project (TIN2015-63562-R), and
from the Brazilian Ministry of Science, Technology and Innovation through Rede
Nacional de Pesquisa (RNP). Computer time on Endeavour cluster is provided by the
Intel Corporation, which enabled us to obtain the presented experimental results in
uncertainty quantification in seismic imagin
Ratio between non-neuronal and neuronal cells.
<p>No difference was found between men and women (pâ=â0.837). The bars indicate the mean for males (blue bar) and females (pink bar); error bar represents standard deviation.</p