77 research outputs found

    Local effective dynamics of quantum systems: A generalized approach to work and heat

    Full text link
    By computing the local energy expectation values with respect to some local measurement basis we show that for any quantum system there are two fundamentally different contributions: changes in energy that do not alter the local von Neumann entropy and changes that do. We identify the former as work and the latter as heat. Since our derivation makes no assumptions on the system Hamiltonian or its state, the result is valid even for states arbitrarily far from equilibrium. Examples are discussed ranging from the classical limit to purely quantum mechanical scenarios, i.e. where the Hamiltonian and the density operator do not commute.Comment: 5 pages, 1 figure, published versio

    Sensing electric fields using single diamond spins

    Full text link
    The ability to sensitively detect charges under ambient conditions would be a fascinating new tool benefitting a wide range of researchers across disciplines. However, most current techniques are limited to low-temperature methods like single-electron transistors (SET), single-electron electrostatic force microscopy and scanning tunnelling microscopy. Here we open up a new quantum metrology technique demonstrating precision electric field measurement using a single nitrogen-vacancy defect centre(NV) spin in diamond. An AC electric field sensitivity reaching ~ 140V/cm/\surd Hz has been achieved. This corresponds to the electric field produced by a single elementary charge located at a distance of ~ 150 nm from our spin sensor with averaging for one second. By careful analysis of the electronic structure of the defect centre, we show how an applied magnetic field influences the electric field sensing properties. By this we demonstrate that diamond defect centre spins can be switched between electric and magnetic field sensing modes and identify suitable parameter ranges for both detector schemes. By combining magnetic and electric field sensitivity, nanoscale detection and ambient operation our study opens up new frontiers in imaging and sensing applications ranging from material science to bioimaging

    Scalable quantum register based on coupled electron spins in a room temperature solid

    Full text link
    Realization of devices based on quantum laws might lead to building processors that outperform their classical analogues and establishing unconditionally secure communication protocols. Solids do usually present a serious challenge to quantum coherence. However, owing to their spin-free lattice and low spin orbit coupling, carbon materials and particularly diamond are suitable for hosting robust solid state quantum registers. We show that scalable quantum logic elements can be realized by exploring long range magnetic dipolar coupling between individually addressable single electron spins associated with separate color centers in diamond. Strong distance dependence of coupling was used to characterize the separation of single qubits 98 A with unprecedented accuracy (3 A) close to a crystal lattice spacing. Our demonstration of coherent control over both electron spins, conditional dynamics, selective readout as well as switchable interaction, opens the way towards a room temperature solid state scalable quantum register. Since both electron spins are optically addressable, this solid state quantum device operating at ambient conditions provides a degree of control that is currently available only for atomic systems.Comment: original submitted version of the manuscrip

    Quantum thermodynamic Otto machines: A spin-system approach

    No full text
    An overview of the realization of an Otto cycle in the quantum regime is given. A detailed description of the involved steps and the efficiency is derived for a quantum machine consisting of a single spin. Within this approach it is possible to understand what happens when the Otto efficiency reaches the Carnot efficiency. The establishment of the Otto cycle in quite a different scenario like that of algorithmic cooling is indicated

    Multipartite entanglement among single spins in diamond

    No full text
    Robust entanglement at room temperature is a necessary requirement for practical applications in quantum technology. We demonstrate the creation of bipartite- and tripartite-entangled quantum states in a small quantum register consisting of individual ¹³C nuclei in a diamond lattice. Individual nuclear spins are controlled via their hyperfine coupling to a single electron at a nitrogen-vacancy defect center. Quantum correlations are of high quality and persist on a millisecond time scale even at room temperature, which is adequate for sophisticated quantum operations.4 page(s
    • …
    corecore