By computing the local energy expectation values with respect to some local
measurement basis we show that for any quantum system there are two
fundamentally different contributions: changes in energy that do not alter the
local von Neumann entropy and changes that do. We identify the former as work
and the latter as heat. Since our derivation makes no assumptions on the system
Hamiltonian or its state, the result is valid even for states arbitrarily far
from equilibrium. Examples are discussed ranging from the classical limit to
purely quantum mechanical scenarios, i.e. where the Hamiltonian and the density
operator do not commute.Comment: 5 pages, 1 figure, published versio