5 research outputs found

    A simple Agrobacterium tumefaciens-mediated transformation method for rapid transgene expression in Medicago truncatula root hairs

    No full text
    International audienceMedicago truncatula is widely used as a model legume for symbiotic and pathogenic microbial interaction studies. Although a number of Agrobacterium-mediated transformation methods have been developed for M. truncatula, a rapid root transformation system was not yet available for this model plant. Here, we describe an easy method for rapid transgene expression in root hairs of M. truncatula, using young seedlings co-cultivated with the disarmed hypervirulent A. tumefaciens strain AGL1. This method leads to efficient expression of various GUS and fluorescent reporters in M. truncatula root hairs. We showed that transgene expression is detected as soon as 2 days following co-culture, in root hairs of a particular responsive zone lying 0.5–2 cm behind the root tip. This method can be used with a variety of M. truncatula genotypes, and is particularly useful for rapid investigation of the sub-cellular localization of fluorescent fusion proteins. Moreover, combining distinct Agrobacterium strains during the initial co-culture step efficiently generates co-transformed root hairs, suitable for co-localization of different fluorescent fusion proteins in the same cell

    Arabidopsis hydathodes are sites of intense auxin metabolism and nutrient scavenging

    No full text
    Abstract Hydathodes are small organs located on the leaf margins of all vascular plants. They release excess xylem sap through guttation when stomata are closed or when the humidity level is high. Many promoter analyses have suggested other hydathode functions in metabolite transport and auxin metabolism, but experimental demonstration is still lacking. Here, we compared the transcriptomic and metabolomic features of mature Arabidopsis hydathodes to the leaf blade. 1460 differentially-expressed genes were identified revealing that genes related to auxin metabolism, transport, stress, DNA, plant cell wall, RNA or wax were on average more expressed in hydathodes. On the other hand, genes involved in glucosinolate metabolism, sulfation pathway, metal handling or photosynthesis were downregulated in hydathodes. In hydathodes, there are an increased expression of auxin transcriptional regulators and biosynthetic genes, a lower expression of auxin transport genes and a differential expression of genes related to its vacuolar storage that is consistent with increased contents of free and conjugated auxin. We also found that ca. 78% of the total content of 52 xylem sap metabolites were removed from guttation fluid at the hydathode level. Using reverse genetics, we showed that the capture of nitrate and phosphate in the guttation fluid relies on the NRT2.1 and PHT1;4 transporters, respectively. Thus, hydathodes absorb a significant part of xylem sap nutrients, limiting the loss of valuable chemicals during guttation. Our transcriptomic and metabolomic analyses reveal an organ with its own transcriptomic and physiological identity and highlight hydathode biological processes that may impact the whole plant. One sentence summary Transcriptome and physiological analysis of mature and healthy hydathodes of Arabidopsis demonstrates that those organs are sites of intense auxin metabolism and nutrient scavengin
    corecore