43 research outputs found
Investigate the origins of COVID-19
On 30 December 2019, the Program for Monitoring Emerging Diseases notified the world about a pneumonia of unknown cause in Wuhan, China. Since then, scientists have made remarkable progress in understanding the causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), its transmission, pathogenesis, and mitigation by vaccines, therapeutics, and non-pharmaceutical interventions. Yet more investigation is still needed to determine the origin of the pandemic. Theories of accidental release from a lab and zoonotic spillover both remain viable. Knowing how COVID-19 emerged is critical for informing global strategies to mitigate the risk of future outbreaks
Size Doesn't Matter: Towards a More Inclusive Philosophy of Biology
notes: As the primary author, OâMalley drafted the paper, and gathered and analysed data (scientific papers and talks). Conceptual analysis was conducted by both authors.publication-status: Publishedtypes: ArticlePhilosophers of biology, along with everyone else, generally perceive life to fall into two broad categories, the microbes and macrobes, and then pay most of their attention to the latter. âMacrobeâ is the word we propose for larger life forms, and we use it as part of an argument for microbial equality. We suggest that taking more notice of microbes â the dominant life form on the planet, both now and throughout evolutionary history â will transform some of the philosophy of biologyâs standard ideas on ontology, evolution, taxonomy and biodiversity. We set out a number of recent developments in microbiology â including biofilm formation, chemotaxis, quorum sensing and gene transfer â that highlight microbial capacities for cooperation and communication and break down conventional thinking that microbes are solely or primarily single-celled organisms. These insights also bring new perspectives to the levels of selection debate, as well as to discussions of the evolution and nature of multicellularity, and to neo-Darwinian understandings of evolutionary mechanisms. We show how these revisions lead to further complications for microbial classification and the philosophies of systematics and biodiversity. Incorporating microbial insights into the philosophy of biology will challenge many of its assumptions, but also give greater scope and depth to its investigations
Species- and strain-specific control of a complex, flexible regulon by Bordetella BvgAS.
Contains fulltext :
50136.pdf (publisher's version ) (Open Access)The Bordetella master virulence regulatory system, BvgAS, controls a spectrum of gene expression states, including the virulent Bvg(+) phase, the avirulent Bvg(-) phase, and at least one Bvg-intermediate (Bvg(i)) phase. We set out to define the species- and strain-specific features of this regulon based on global gene expression profiling. Rather than functioning as a switch, Bvg controls a remarkable continuum of gene expression states, with hundreds of genes maximally expressed in intermediate phases between the Bvg(+) and Bvg(-) poles. Comparative analysis of Bvg regulation in B. pertussis and B. bronchiseptica revealed a relatively conserved Bvg(+) phase transcriptional program and identified previously uncharacterized candidate virulence factors. In contrast, control of Bvg(-)- and Bvg(i)-phase genes diverged substantially between species; regulation of metabolic, transporter, and motility loci indicated an increased capacity in B. bronchiseptica, compared to B. pertussis, for ex vivo adaptation. Strain comparisons also demonstrated variation in gene expression patterns within species. Among the genes with the greatest variability in patterns of expression, predicted promoter sequences were nearly identical. Our data suggest that the complement of transcriptional regulators is largely responsible for transcriptional diversity. In support of this hypothesis, many putative transcriptional regulators that were Bvg regulated in B. bronchiseptica were deleted, inactivated, or unregulated by BvgAS in B. pertussis. We propose the concept of a "flexible regulon." This flexible regulon may prove to be important for pathogen evolution and the diversification of host range specificity
SmashCell: a software framework for the analysis of single-cell amplified genome sequences
Recent advances in single-cell manipulation technology, whole genome amplification and high-throughput sequencing have now made it possible to sequence the genome of an individual cell. The bioinformatic analysis of these genomes however is far more complicated than the analysis of those generated using traditional, culture-based methods. In order to simplify this analysis we have developed SmashCell (Simple Metagenomics Analysis SHell-for sequences from single Cells). It is designed to automate the main steps in microbial genome analysis - assembly, gene prediction, functional annotation - in a way that allows parameter and algorithm exploration at each step in the process. It alsomanages the data created by these analyses and provides visualisation methods to allow rapid analysis of the results. AVAILABILITY: The SmashCell source code and a comprehensive manual are available at http://asiago.stanford.edu/SmashCell CONTACT: [email protected]
Host Genotype Links to Salivary and Gut Microbiota by Periodontal Status
Limited evidence describing how host genetic variants affect the composition of the microbiota is currently available. The aim of this study was to assess the associations between a set of candidate host genetic variants and microbial composition in both saliva and gut in the TwinsUK registry. A total of 1,746 participants were included in this study and provided stool samples. A subset of 1,018 participants also provided self-reported periodontal data, and 396 of those participants provided a saliva sample. Host DNA was extracted from whole-blood samples and processed for Infinium Global screening array, focusing on 37 selected single-nucleotide polymorphisms (SNPs) previously associated with periodontitis. The gut and salivary microbiota of participants were profiled using 16S ribosomal RNA amplicon sequencing. Associations between genotype on the selected SNPs and microbial outcomes, including α diversity, ÎČ diversity, and amplicon sequence variants (ASVs), were investigated in a multivariate mixed model. Self-reported periodontal status was also compared with microbial outcomes. Downstream analyses in gut microbiota and salivary microbiota were carried out separately. IL10 rs6667202 and VDR 2228570 SNPs were associated with salivary α diversity, and SNPs in IL10, HSA21, UHRF2, and Fc-ÎłR genes were associated with dissimilarity matrix generated from salivary ÎČ diversity. The SNP that was associated with the greatest number of salivary ASVs was VDR 2228570 followed by IL10 rs6667202, and that of gut ASVs was NPY rs2521364. There were 77 salivary ASVs and 39 gut ASVs differentially abundant in self-reported periodontal disease versus periodontal health. The dissimilarity between saliva and gut microbiota within individuals appeared significantly greater in self-reported periodontal cases compared to periodontal health. IL10 and VDR gene variants may affect salivary microbiota composition. Periodontal status may drive variations in the salivary microbiota and possibly, to a lesser extent, in the gut microbiota