93 research outputs found

    Mecanismos de muerte celular inducidos por nuevas terapias antitumorales

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Biología. Fecha de lectura: 25-01-200

    Atracción y transparencia: la gestión de la Ciencia en la época del crowdfunding

    Get PDF
    En los últimos años se ha hecho evidente la brecha que ha ido surgiendo en la financiación pública de la producción científica. Además de la conocida crisis económica iniciada hace diez años, existe una cierta fatiga en los poderes públicos nacionales que no aprecian rédito en el “gasto” científico. Complementariamente, han ido surgiendo movimientos que reclaman a la comunidad investigadora un mayor nivel de rendición de cuentas para hacer de la Ciencia una actividad abierta y transparente al escrutinio público. Muchos investigadores se han vuelto hacia las acciones de financiación mediante micromecenazgo por suscripción popular (crowdfunding) como un complemento, o incluso la solución de su carencia de fondos. El micromecenazgo se articula mediante sitios webs u organizaciones intermediarias sin ánimo de lucro. A través de la relación entre el Grup de Recerca en Sarcomes del instituto IDIBELL (L’Hospitalet de Llobregat) y la Fundación “Alba Pérez lucha contra el cáncer infantil” analizaremos los esfuerzos y desafíos operativos que son necesarios para el éxito de este tipo de relaciones. Comprobaremos que el crowdfunding se basa fundamentalmente en parámetros más o menos informales de confianza y que el papel de los Organismos Públicos de Investigación (OPIs) es residual. Finalmente analizaremos las posibilidades de que una mayor transparencia y proactividad en la rendición de cuentas y diseminación de los resultados de investigación tienen para que los OPIs puedan incorporarse a los procesos de micromecenazgo. La generación de una adecuada y sólida reputación de los OPIs como marcas permitiría su implicación en las acciones de crowdfunding. Los OPIs están llamado a ser garantes de la buena utilización de los fondos y a dirigirlos a actividades más colaborativas y que proporcionen mayor rendimiento social que proyectos aislados y de limitado alcance

    The selectivity and specificity of autophagy in drosophila

    Get PDF
    Autophagy is a process of cellular self-degradation and is a major pathway for elimination of cytoplasmic material by the lysosomes. Autophagy is responsible for the degradation of damaged organelles and protein aggregates and therefore plays a significant role in cellular homeostasis. Despite the initial belief that autophagy is a nonselective bulk process, there is growing evidence during the last years that sequestration and degradation of cellular material by autophagy can be accomplished in a selective and specific manner. Given the role of autophagy and selective autophagy in several disease related processes such as tumorigenesis, neurodegeneration and infections, it is very important to dissect the molecular mechanisms of selective autophagy, in the context of the system and the organism. An excellent genetically tractable model organism to study autophagy is Drosophila, which appears to have a highly conserved autophagic machinery compared with mammals. However, the mechanisms of selective autophagy in Drosophila have been largely unexplored. The aim of this review is to summarize recent discoveries about the selectivity of autophagy in Drosophila

    Bcl-xL inhibition enhances Dinaciclib-induced cell death in soft-tissue sarcomas

    Full text link
    Soft-tissue sarcomas (STS) are an uncommon and heterogeneous group of malignancies that result in high mortality. Metastatic STS have very bad prognosis due to the lack of effective treatments. Dinaciclib is a model drug for the family of CDK inhibitors. Its main targets are cell cycle regulator CDK1 and protein synthesis controller CDK9. We present data supporting Dinaciclib ability to inactivate in vitro different STS models at nanomolar concentrations. Moreover, the different rhythms of cell death induction allow us to further study into the mechanism of action of the drug. Cell death was found to respond to the mitochondrial pathway of apoptosis. Anti-apoptotic Bcl-xL was identified as the key regulator of this process. Already natural low levels of pro-apoptotic proteins BIM and PUMA in tolerant cell lines were insufficient to inhibit Bcl-xL as this anti-apoptotic protein showed a slow decay curve after Dinaciclib-induced protein synthesis disruption. Combination of Dinaciclib with BH3-mimetics led to quick and massive apoptosis induction in vitro, but in vivo assessment was prevented due to liver toxicity. Additionally, Bcl-xL inhibitor A-1331852 also synergized with conventional chemotherapy drugs as Gemcitabine. Thus, Bcl-xL targeted therapy arises as a major opportunity to the treatment of STS

    Improved selectivity and cytotoxic effects of irinotecan via liposomal delivery: A comparative study on Hs68 and HeLa cells

    Get PDF
    Irinotecan (CPT-11) is an effective chemotherapeutic agent widely used to treat different cancers. Otherwise, the liposomal delivery of anti-tumor agents has been shown to be a promising strategy. The aim of this study has been to analyze the effect of liposomal CPT-11 (CPT-11lip) on two human cell lines (Hs68 and HeLa) to establish the suitability of this CPT-11 nanocarrier. We have demonstrated the highest uptake of CPT-11lip in comparison with that of CPT-11sol, in lactate buffer, and that CPT-11lip was internalized in the cells through an endocytic process whereas CPT-11sol does so by passive diffusion. CPT-11lip was not cytotoxic to normal fibroblast Hs68 cells, but induced a massive apoptosis accompanied by cell senescence in HeLa cells. CPT-11lip treatment modified the morphology of HeLa cells, induced different cell cycle alterations and accumulated into lysosomes in both cell lines. In particular, CPT-11lip treatment showed that surviving HeLa cells remained in a state of senescence whereas only a temporal growth arrest was induced in Hs68 cells. Results of RT-PCR indicated that the different responses in Hs68 (survival) and HeLa cells (apoptotic death), seemed to be induced by a p53- and p53- independent mechanism, respectively. An analysis of DNA damage also determined that released CPT-11 from liposomes was able to reach the nucleus and exert a genotoxic effect in both cell lines, which was repaired in Hs68 but not in HeLa cells. All results indicate that phospholipid-cholesterol liposomes possess optimum properties for CPT-11 delivery, being biocompatible and selectively cytotoxic against HeLa tumorigenic cells.

    The importance of being dead: cell death mechanisms assessment in anti-sarcoma therapy

    Get PDF
    Cell death can occur through different mechanisms, defined by their nature and physiological implications. Correct assessment of cell death is crucial for cancer therapy success. Sarcomas are a large and diverse group of neoplasias from mesenchymal origin. Among cell death types, apoptosis is by far the most studied in sarcomas. Albeit very promising in other fields, regulated necrosis and other cell death circumstances (as so-called "autophagic cell death" or "mitotic catastrophe") have not been yet properly addressed in sarcomas. Cell death is usually quantified in sarcomas by unspecific assays and in most cases the precise sequence of events remains poorly characterized. In this review, our main objective is to put into context the most recent sarcoma cell death findings in the more general landscape of different cell death modalities

    An automated fluorescence videomicroscopy assay for the detection of mitotic catastrophe

    Get PDF
    Mitotic catastrophe can be defined as a cell death mode that occurs during or shortly after a prolonged/aberrant mitosis, and can show apoptotic or necrotic features. However, conventional procedures for the detection of apoptosis or necrosis, including biochemical bulk assays and cytofluorometric techniques, cannot discriminate among pre-mitotic, mitotic and post-mitotic death, and hence are inappropriate to monitor mitotic catastrophe. To address this issue, we generated isogenic human colon carcinoma cell lines that differ in ploidy and p53 status, yet express similar amounts of fluorescent biosensors that allow for the visualization of chromatin (histone H2B coupled to green fluorescent protein (GFP)) and centrosomes (centrin coupled to the Discosoma striata red fluorescent protein (DsRed)). By combining high-resolution fluorescence videomicroscopy and automated image analysis, we established protocols and settings for the simultaneous assessment of ploidy, mitosis, centrosome number and cell death (which in our model system occurs mainly by apoptosis). Time-lapse videomicroscopy showed that this approach can be used for the high-throughput detection of mitotic catastrophe induced by three mechanistically distinct anti-mitotic agents (dimethylenastron (DIMEN), nocodazole (NDZ) and paclitaxel (PTX)), and – in this context – revealed an important role of p53 in the control of centrosome number

    Caveolin-1 is down-regulated in alveolar habdomyosarcomas and negatively regulates tumor growth

    Get PDF
    Rhabdomyosarcoma is the most common soft tissue sarcoma of childhood and adolescence. Despite advances in therapy, patients with histological variant of rhabdomyosarcoma known as alveolar rhabdomyosarcoma (ARMS) have a 5-year survival of less than 30%. Caveolin-1 (CAV1), encoding the structural component of cellular caveolae, is a suggested tumor suppressor gene involved in cell signaling. In the present study we report that compared to other forms of rhabdomyosarcoma (RMS) CAV1 expression is either undetectable or very low in ARMS cell lines and tumor samples. DNA methylation analysis of the promoter region and azacytidine-induced re-expression suggest the involvement of epigenetic mechanisms in the silencing of CAV1. Reintroduction of CAV1 in three of these cell lines impairs their clonogenic capacity and promotes features of muscular differentiation. In vitro, CAV1-expressing cells show high expression of Caveolin-3 (CAV3), a muscular differentiation marker. Blockade of MAPK signaling is also observed. In vivo, CAV1-expressing xenografts show growth delay, features of muscular differentiation and increased cell death. In summary, our results suggest that CAV1 could function as a potent tumor suppressor in ARMS tumors. Inhibition of CAV1 function therefore, could contribute to aberrant cell proliferation, leading to ARMS development
    corecore