36 research outputs found

    Propagation of Bessel beams from a dielectric to a conducting medium

    Full text link
    Recently, the use of Bessel beams in evaluating the possibility of using them for a new generation of GPR (ground penetrating radar) systems has been considered. Therefore, an analysis of the propagation of Bessel beam in conducting media is worthwhile. We present here an analysis of this type. Specifically, for normal incidence we analyze the propagation of a Bessel beam coming from a perfect dielectric and impinging on a conducting medium, i.e. the propagation of a Bessel beam generated by refracted inhomogeneous waves. The remarkable and unexpected result is that the incident Bessel beam does not change its shape even when propagating in the conducting medium.Comment: To be publishe

    Photon localization barrier can be overcome

    Full text link
    In contradistinction to a widespread belief that the spatial localization of photons is restricted by a power-law falloff of the photon energy density, I.Bialynicki-Birula [Phys. Rev. Lett. 80, 5247 (1998)] has proved that any stronger -- up to an almost exponential -- falloff is allowed. We are showing that for certain specifically designed cylindrical one-photon states the localization is even better in lateral directions. If the photon state is built from the so-called focus wave mode, the falloff in the waist cross-section plane turns out to be quadratically exponential (Gaussian) and such strong localization persists in the course of propagation.Comment: Short communication -- 4 pages, 2 figure

    Superluminal behavior and the Minkowski space-time

    Full text link
    Bessel X-waves, or Bessel beams, have been extensively studied in last years, especially with regard to the topic of superluminality in the propagation of a signal. However, in spite of many efforts devoted to this subject, no definite answer has been found, mainly for lack of an exact definition of signal velocity. The purpose of the present work is to investigate the field of existence of Bessel beams in order to overcome the specific question related to the definition of signal velocity. Quite surprisingly, this field of existence can be represented in the Minkowski space-time by a Super-Light Cone which wraps itself around the well-known Light Cone. So, the change in the upper limit of the light velocity does not modify the fundamental low of the relativity and the causal principle.Comment: 3 pages, 2 figure

    Diffraction-free beams in thin films

    Get PDF
    The propagation and transmission of Bessel beams through nano-layered structures has been discussed recently. Within this framework we recognize the formation of unguided diffraction-free waves with the spot size approaching and occasionally surpassing the limit of a wavelength when a Bessel beam of any order n is launched onto a thin material slab with grazing incidence. Based on the plane-wave representation of cylindrical waves, a simple model is introduced providing an exact prescription of the transverse pattern of this type of diffraction-suppressed localized waves. Potential applications in surface science are put forward for consideration

    X-waves Generated at Second Harmonic

    Full text link
    The process of optical frequency doubling can lead, in the undepleted regime, to the generation of a X-wave envelope with group velocity locked to the pump beam. Its parameters and its angular spectrum, are directly related to the zero- and first-order dispersive features of the nonlinear process. This constitutes a novel mechanism for spatio-temporal localization of light.Comment: 11 pages, 1 figure, revised version submitted to Optics Letter

    X-wave mediated instability of plane waves in Kerr media

    Get PDF
    Plane waves in Kerr media spontaneously generate paraxial X-waves (i.e. non-dispersive and non-diffractive pulsed beams) that get amplified along propagation. This effect can be considered a form of conical emission (i.e. spatio-temporal modulational instability), and can be used as a key for the interpretation of the out of axis energy emission in the splitting process of focused pulses in normally dispersive materials. A new class of spatio-temporal localized wave patterns is identified. X-waves instability, and nonlinear X-waves, are also expected in periodical Bose condensed gases.Comment: 4 pages, 6 figure
    corecore