200 research outputs found

    Interleukin-9 (IL-9) and NPM-ALK each generate mast cell hyperplasia as single ‘hit’ and cooperate in producing a mastocytosis-like disease in mice

    Get PDF
    Mast cell neoplasms are characterized by abnormal growth and focal accumulation of mast cells (MC) in one or more organs. Although several cytokines, including stem cell factor (SCF) and interleukin-9 (IL-9) have been implicated in growth of normal MC, little is known about pro-oncogenic molecules and conditions triggering differentiation and growth of MC far enough to lead to the histopathological picture of overt mastocytosis. The anaplastic lymphoma kinase (ALK) has recently been implicated in growth of neoplastic cells in malignant lymphomas. Here, we describe that transplantation of NPM-ALK-transplanted mouse bone marrow progenitors into lethally irradiated IL-9 transgenic mice not only results in lymphoma-formation, but also in the development of a neoplastic disease exhibiting histopathological features of systemic mastocytosis, including multifocal dense MC-infiltrates, occasionally with devastating growth in visceral organs. Transplantation of NPM-ALK-transduced progenitors into normal mice or maintaintence of IL-9-transgenic mice without NPM-ALK each resulted in MC hyperplasia, but not in mastocytosis. Neoplastic MC in mice not only displayed IL-9, but also the IL-9 receptor, and the same was found to hold true for human neoplastic MC. Together, our data show that neoplastic MC express IL-9 rececptors, that IL-9 and NPM-ALK upregulate MC-production in vivo, and that both ‘hits’ act in concert to induce a mastocytosis-like disease in mice. These data may have pathogenetic and clinical implications and fit well with the observation that neoplastic MC in advanced SM strongly express NPM and multiple “lymphoid” antigens including CD25 and CD30

    Next Steps for Human-Computer Integration

    Get PDF
    Human-Computer Integration (HInt) is an emerging paradigm in which computational and human systems are closely interwoven. Integrating computers with the human body is not new. however, we believe that with rapid technological advancements, increasing real-world deployments, and growing ethical and societal implications, it is critical to identify an agenda for future research. We present a set of challenges for HInt research, formulated over the course of a five-day workshop consisting of 29 experts who have designed, deployed and studied HInt systems. This agenda aims to guide researchers in a structured way towards a more coordinated and conscientious future of human-computer integration

    An Overview of Recommender Systems in the Internet of Things

    Get PDF
    The Internet Of Things (IoT) is an emerging paradigm that envisions a networked infrastructure enabling different types of devices to be interconnected. It creates different kinds of artifacts (e.g., services and applications) in various application domains such as health monitoring, sports monitoring, animal monitoring, enhanced retail services, and smart homes. Recommendation technologies can help to more easily identify relevant artifacts and thus will become one of the key technologies in future IoT solutions. In this article, we provide an overview of existing applications of recommendation technologies in the IoT context and present new recommendation techniques on the basis of real-world IoT scenarios

    Possible Contexts of Use for In Silico trials methodologies: a consensus- based review

    Get PDF
    The term In Silico Trial indicates the use of computer modelling and simulation to evaluate the safety and efficacy of a medical product, whether a drug, a medical device, a diagnostic product or an advanced therapy medicinal product. Predictive models are positioned as new methodologies for the development and the regulatory evaluation of medical products. New methodologies are qualified by regulators such as FDA and EMA through formal processes, where a first step is the definition of the Context of Use (CoU), which is a concise description of how the new methodology is intended to be used in the development and regulatory assessment process. As In Silico Trials are a disruptively innovative class of new methodologies, it is important to have a list of possible CoUs highlighting potential applications for the development of the relative regulatory science. This review paper presents the result of a consensus process that took place in the InSilicoWorld Community of Practice, an online forum for experts in in silico medicine. The experts involved identified 46 descriptions of possible CoUs which were organised into a candidate taxonomy of nine CoU categories. Examples of 31 CoUs were identified in the available literature; the remaining 15 should, for now, be considered speculative

    Loop Quantum Cosmology: A Status Report

    Get PDF
    The goal of this article is to provide an overview of the current state of the art in loop quantum cosmology for three sets of audiences: young researchers interested in entering this area; the quantum gravity community in general; and, cosmologists who wish to apply loop quantum cosmology to probe modifications in the standard paradigm of the early universe. An effort has been made to streamline the material so that, as described at the end of section I, each of these communities can read only the sections they are most interested in, without a loss of continuity.Comment: 138 pages, 15 figures. Invited Topical Review, To appear in Classical and Quantum Gravity. Typos corrected, clarifications and references adde

    Uncovering three-dimensional gradients in fibrillar orientation in an impact-resistant biological armour

    Get PDF
    The complex hierarchical structure in biological and synthetic fibrous nanocomposites entails considerable difficulties in the interpretation of the crystallographic texture from diffraction data. Here, we present a novel reconstruction method to obtain the 3D distribution of fibres in such systems. An analytical expression is derived for the diffraction intensity from fibres, explaining the azimuthal intensity distribution in terms of the angles of the three dimensional fibre orientation distributions. The telson of stomatopod (mantis shrimp) serves as an example of natural biological armour whose high impact resistance property is believed to arise from the hierarchical organization of alpha chitin nanofibrils into fibres and twisted plywood (Bouligand) structures at the sub-micron and micron scale. Synchrotron microfocus scanning X-ray diffraction data on stomatopod telson were used as a test case to map the 3D fibre orientation across the entire tissue section. The method is applicable to a range of biological and biomimetic structures with graded 3D fibre texture at the sub-micron and micron length scales

    Identification of heat shock protein 32 (Hsp32) as a novel target in acute lymphoblastic leukemia

    Get PDF
    Heat shock proteins (Hsp) are increasingly employed as therapeutic targets in oncology. We have shown that Hsp32, also known as heme oxygenase-1 (HO-1), serves as survival factor and potential target in Ph+ chronic myeloid leukemia. We here report that primary cells and cell lines derived from patients with acute lymphoblastic leukemia (ALL) express Hsp32 mRNA and the Hsp32 protein in a constitutive manner. Highly enriched CD34+/CD38- ALL stem cells also expressed Hsp32. Two Hsp32-targeting drugs, pegylated zinc protoporphyrine (PEG-ZnPP) and styrene maleic acid-micelle-encapsulated ZnPP (SMA-ZnPP), induced apoptosis and growth arrest in the BCR/ABL1+ cell lines, in Ph- lymphoblastic cell lines and in primary Ph+ and Ph- ALL cells. The effects of PEG-ZnPP and SMA-ZnPP on growth of leukemic cells were dose-dependent. In Ph+ ALL, major growth-inhibitory effects of the Hsp32-targeting drugs were observed in imatinib-sensitive and imatinib-resistant cells. Hsp32-targeting drugs were found to synergize with imatinib, nilotinib, and bendamustine in producing growth inhibition and apoptosis in Ph+ ALL cells. A siRNA against Hsp32 was found to inhibit growth and survival of ALL cells and to synergize with imatinib in suppressing the growth of ALL cells. In conclusion, Hsp32 is an essential survival factor and potential new target in ALL.Sabine Cerny-Reiterer, Renata A. Meyer, Harald Herrmann, Barbara Peter, Karoline V. Gleixner, Gabriele Stefanzl, Emir Hadzijusufovic, Winfried F. Pickl, Wolfgang R. Sperr, Junia V. Melo, Hiroshi Maeda, Ulrich Jäger, Peter Valen

    A target-disease network model of second-generation BCR-ABL inhibitor action in Ph+ ALL

    Get PDF
    Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) is in part driven by the tyrosine kinase bcr-abl, but imatinib does not produce long-term remission. Therefore, second-generation ABL inhibitors are currently in clinical investigation. Considering different target specificities and the pronounced genetic heterogeneity of Ph+ ALL, which contributes to the aggressiveness of the disease, drug candidates should be evaluated with regard to their effects on the entire Ph+ ALL-specific signaling network. Here, we applied an integrated experimental and computational approach that allowed us to estimate the differential impact of the bcr-abl inhibitors nilotinib, dasatinib, Bosutinib and Bafetinib. First, we determined drug-protein interactions in Ph+ ALL cell lines by chemical proteomics. We then mapped those interactions along with known genetic lesions onto public protein-protein interactions. Computation of global scores through correlation of target affinity, network topology, and distance to disease-relevant nodes assigned the highest impact to dasatinib, which was subsequently confirmed by proliferation assays. In future, combination of patient-specific genomic information with detailed drug target knowledge and network-based computational analysis should allow for an accurate and individualized prediction of therapy.Uwe Rix, a, Jacques Colinge, Katharina Blatt, Manuela Gridling, Lily L. Remsing Rix, a, Katja Parapatics, Sabine Cerny-Reiterer, Thomas R. Burkard, Ulrich Jäger, Junia V. Melo, Keiryn L. Bennett, Peter Valent, Giulio Superti-Furg

    Phase III trial comparing paclitaxel poliglumex vs docetaxel in the second-line treatment of non-small-cell lung cancer

    Get PDF
    Paclitaxel poliglumex (PPX), a macromolecule drug conjugate linking paclitaxel to polyglutamic acid, reduces systemic exposure to peak concentrations of free paclitaxel. Patients with non-small-cell lung cancer (NSCLC) who had received one prior platinum-based chemotherapy received 175 or 210 mg m−2 PPX or 75 mg m−2 docetaxel. The study enrolled 849 previously treated NSCLC patients with advanced disease. Median survival (6.9 months in both arms, hazard ratio=1.09, P=0.257), 1-year survival (PPX=25%, docetaxel=29%, P=0.134), and time to progression (PPX=2 months, docetaxel=2.6 months, P=0.075) were similar between treatment arms. Paclitaxel poliglumex was associated with significantly less grade 3 or 4 neutropenia (P<0.001) and febrile neutropenia (P=0.006). Grade 3 or 4 neuropathy (P<0.001) was more common in the PPX arm. Patients receiving PPX had less alopecia and did not receive routine premedications. More patients discontinued due to adverse events in the PPX arm compared to the docetaxel arm (34 vs 16%, P<0.001). Paclitaxel poliglumex and docetaxel produced similar survival results but had different toxicity profiles. Compared with docetaxel, PPX had less febrile neutropenia and less alopecia, shorter infusion times, and elimination of routine use of medications to prevent hypersensitivity reactions. Paclitaxel poliglumex at a dose of 210 mg m−2 resulted in increased neurotoxicity compared with docetaxel
    corecore