
1 23

Journal of Intelligent Information
Systems
Integrating Artificial Intelligence and
Database Technologies

ISSN 0925-9902

J Intell Inf Syst
DOI 10.1007/s10844-018-0530-7

An overview of recommender systems in the
internet of things

Alexander Felfernig, Seda Polat-Erdeniz,
Christoph Uran, Stefan Reiterer,
Muesluem Atas, Thi Ngoc Trang Tran,
Paolo Azzoni, et al.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca - Fondazione Bruno Kessler

https://core.ac.uk/display/226083036?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 23

Your article is published under the Creative

Commons Attribution license which allows

users to read, copy, distribute and make

derivative works, as long as the author of

the original work is cited. You may self-

archive this article on your own website, an

institutional repository or funder’s repository

and make it publicly available immediately.

Journal of Intelligent Information Systems
https://doi.org/10.1007/s10844-018-0530-7

An overview of recommender systems in the internet
of things

Alexander Felfernig1 · Seda Polat-Erdeniz1 ·Christoph Uran1 · Stefan Reiterer1 ·
Muesluem Atas1 · Thi Ngoc Trang Tran1 ·Paolo Azzoni2 ·Csaba Kiraly3 ·
Koustabh Dolui3

Received: 20 March 2017 / Revised: 6 June 2018 / Accepted: 18 September 2018 /

© The Author(s) 2018

Abstract
The Internet Of Things (IoT) is an emerging paradigm that envisions a networked infras-
tructure enabling different types of devices to be interconnected. It creates different kinds of
artifacts (e.g., services and applications) in various application domains such as health mon-
itoring, sports monitoring, animal monitoring, enhanced retail services, and smart homes.
Recommendation technologies can help to more easily identify relevant artifacts and thus
will become one of the key technologies in future IoT solutions. In this article, we provide
an overview of existing applications of recommendation technologies in the IoT context and
present new recommendation techniques on the basis of real-world IoT scenarios.

Keywords Recommender systems · Internet of things

1 Introduction

As an emerging paradigm, the Internet Of Things (IoT) (Atzori et al. 2010; Greengard 2015)
represents a networked infrastructure connecting different types of devices in any place
and anytime. IoT can be seen as the result of the convergence of the three main domains
Things, Internet, and Semantics. Recommendation technologies (Jannach et al. 2010) can
support the efficient identification of relevant artifacts and thus will become one of the key-
technologies of IoT solutions. Recommender systems (Jannach et al. 2010) suggest items
(alternatives, solutions) that are of potential interest for a user. Examples of related ques-
tions are: which book should be purchased?, which test method should be applied?, which
method calls are useful in a certain development context? or which apps (applications) are
of potential interest for the current user? A recommender system can be defined as any sys-
tem that guides a user in a personalized way to interesting or useful objects in a large space
of possible options or that produces such objects as output (Felfernig and Burke 2008).

� Seda Polat-Erdeniz
spolater@ist.tugraz.at

Extended author information available on the last page of the article.

http://crossmark.crossref.org/dialog/?doi=10.1007/s10844-018-0530-7&domain=pdf
mailto: spolater@ist.tugraz.at

Journal of Intelligent Information Systems

Recommender technologies are mainly based on two fundamental approaches; collabo-
rative filtering and content-based filtering. Collaborative Filtering (Konstan et al. 1997) is
using the opinion of users with similar preferences whereas Content-based Filtering (Paz-
zani and Billsus 1997) is based on comparing the content of already consumed items with
new items that can potentially be recommended to the user. Other basic recommendation
approaches are knowledge-based recommendation, group recommender systems, and hybrid
recommendation. Knowledge-based recommender systems (Felfernig et al. 2015) are based
on explicit knowledge, rules or constraints about the item assortment, user preferences, and
recommendation criteria (i.e., which item should be recommended in which context). Group
recommender systems (Felfernig et al. 2018; Masthoff 2011) calculate recommendations
where the whole group should be satisfied with the given recommendation. Hybrid recom-
mendation (Burke 2002) combines basic recommendation approaches to compensate the
weaknesses of individual ones. In Section 3, these basic approaches are explained in detail
based on the real IoT use cases from our project.

In the IoT domain, recommendation functionalities are required, for example, in IoT
workflow development, the recommendation of apps, and domain-specific scenarios such
as food recommendation (Valtolina et al. 2014), personalized shopping (Magerkurth et al.
2011), and technology fairs (Munoz-Organero et al. 2010). Example upcoming IoT appli-
cation domains are health monitoring, animal monitoring, enhanced retail services, smart
homes, and sports events (Felfernig et al. 2016; Greengard 2015; Leitner et al. 2014; Ray
2015; Stolpe 2016).

As shown in Fig. 1, IoT sensors can be connected to an IoT gateway using various con-
nection protocols such as 5G, BLE, LORA, and ZigBee. Users of the gateway can connect
their gateway via WAN/LAN to manage/monitor their data and services. They can also
manage/monitor the collected data by linking a cloud application with their IoT gateway.

Fig. 1 Software architecture of an IoT gateway

Journal of Intelligent Information Systems

An IoT gateway is a hardware and software-based solution, which, as its primary role,
enables device-to-device and/or device-to-cloud communication. It is a platform to support
connections between different data sources (sensors with various communication protocols)
and destinations (local or remote data management entities, as well as various actuators).
IoT gateways, positioned at the edge and near the devices, could also play a crucial role in
the execution of services. A typical IoT gateway platform is composed of a device manager,
a communication/data protocols manager, an application manager, and a data manager (see
Fig. 1). Advanced IoT gateways contain additional functionalities among which a configu-
rator and a recommender engine can be included to assist users in the configuration of the
gateway or in recommending useful applications based on given gateway settings and user
interaction protocols.

In health monitoring (so-called Quantified-Self) (Erdeniz et al. 2018; Maglogiannis et al.
2016; Menychtas et al. 2016), users need to know which measuring instruments are needed
in their specific context and also how to change personal behaviors (e.g., eating and sports)
to improve their situation. The realization of Quantified-Self concept requires the integra-
tion of several mobile health and IoT elements, where related applications are orchestrated
around the IoT Gateway. The gateway connects to the home network and through the gate-
way’s management user interface, the owner has access to all provided features, such as
reporting and visualization tools, can manage (store/view/edit) their data and define an
access policy to share data with their social network contacts. Wearable activity trackers and
medical sensors (such as oximeters,1 blood pressure monitors2 or glucometers3) automat-
ically communicate with the gateway whenever within range, and upload the most recent
data. Integration with cloud platforms (such as Fitbit,4 and GoogleFit5) allows data syn-
chronization between the gateway and the owner’s online profile, which enables the user
to access their data through a web application. In addition, health and activity data can be
downloaded to the gateway from the owner’s personal accounts on relevant platforms.

In the context of wildlife animal monitoring, measuring devices and data collection
units (typically drones) have to be selected and parametrized in such a way that the obser-
vation area is completely covered, i.e., the needed data can be provided in the required
quality. IoT-based retail services are developed to support a personalized shopping experi-
ence in physical stores. In this context, recommender algorithms help to determine which
offers should be recommended to a customer when, where, and in which format. In the
context of smart homes, recommendation technologies improve the overall applicability of
the installed equipment and can also help to optimize the usage of the available resources
(e.g., minimizing power consumption). At large scale sports events such as marathons or
triathlons, recommender systems can help the spectators to determine the current geograph-
ical location of certain athletes. This further results in recommended sites at which the
athlete can be seen and cheered.

In the AGILE Project,6 we have developed new recommendation approaches which are
especially useful in IoT scenarios. The AGILE project aims to create Internet of Things

1https://en.wikipedia.org/wiki/Pulse oximetry
2http://bestreviews.com/best-blood-pressure-monitors
3https://en.wikipedia.org/wiki/Glucose meter
4https://www.fitbit.com/at/home
5https://www.google.com/fit/
6AGILE (An Adaptive & Modular Gateway for the IoT) is an EU-funded H2020 project 2016–2018 – see
http://agile-iot.eu/.

https://en.wikipedia.org/wiki/Pulse_oximetry
http://bestreviews.com/best-blood-pressure-monitors
https://en.wikipedia.org/wiki/Glucose_meter
https://www.fitbit.com/at/home
https://www.google.com/fit/
http://agile-iot.eu/.

Journal of Intelligent Information Systems

(IoT) gateway technologies that support many devices, protocols, and corresponding man-
agement and development activities. The goal of this article is to show how recommenders
can be applied in IoT scenarios and to propose new recommendation approaches for the
IoT domain. In this context, we also provide an overview of existing applications of
recommendation technologies in the IoT.

The remainder of this article is organized as follows. In Section 2, the state of the art
of recommendation technologies in IoT application contexts is analyzed. In Section 3, we
present a motivating example “IoT for the smart home” which is used throughout the paper
for explaining the recommendation approaches. In Section 4, an overview of possibilities
to apply basic recommendation approaches in the IoT domain is presented. In Section 5,
we propose new recommendation approaches and explain them on the basis of example
scenarios in the AGILE project. In Section 6, selection criteria for recommender algorithms
are discussed. Finally, we discuss open research issues in Section 7 and conclude the article
with Section 8.

2 Related work

Compared to other recommendation scenarios, IoT-based applications enable a deeper
understanding of user preferences and behaviors which can primarily be explained by the
availability of heterogeneous information sources (Amato et al. 2013). For instance, person-
alized shopping is a core element of IoT technology based retail environments (Magerkurth
et al. 2011). Customers entering a store receive recommendations regarding items and cor-
responding price offers – these recommendations depend on the condition of the offered
items. For example, if the expiration date of some of the offered items is approaching, and
this information is detected via their RFID (radio frequency identification) tags (Finken-
zeller 2010), corresponding special offers can be announced to the customer. Important
IoT-related aspects are automated quality control of items, context-dependent pricing, and
targeted product information (Mashal et al. 2016). The recommendation approach presented
in Magerkurth et al. (2011) follows a knowledge-based (rule-based) paradigm. However, in
this paper, we show how to generate such rules on the basis of sequence mining techniques
(Srikant and Agrawal 1996).

Valtolina et al. (2014) introduce a household scenario where users ask for recommen-
dations regarding recipes. In the context of an IoT infrastructure, a recommender system
does not have to only rely on the preferences of the user but can take into account further
information sources. For example, recipe recommendation can take into account the avail-
ability of food items in the fridge, personal diet plans, food consumption information from
the last days, planned activities, and also historical data about last day’s sports activities. In
this scenario, the fridge can read the RFID tags (Finkenzeller 2010) of items and notify the
mobile application over a BLE (bluetooth low energy) (Lee et al. 2007) connection. This
availability of orthogonal data sources provided by IoT devices will help to increase the pre-
diction quality of recommendation algorithms. In this scenario, the recommendations are
based only on the data of the active user.

In many applications, such as recommending a vacation package, personalized content
on a Web site, or a movie, it may not be sufficient to consider only users and items, it is
also important to incorporate the contextual information into the recommendation process in
order to recommend items to users under certain circumstances (Adomavicius and Tuzhilin
2015). Therefore, some recommender approaches focus on recommending the most relevant

Journal of Intelligent Information Systems

items to users by taking into account any additional contextual information, such as time,
location, or the company of other people (e.g., for watching movies or dining out). Con-
textual information is also important in many IoT use cases. Munoz-Organero et al. (2010)
introduce technology fairs as a scenario where context-aware recommender systems can be
applied. In such a scenario, users can receive information about exhibits of relevance and
also be informed about lectures to attend depending on their personal preferences. In such
scenarios, location tags (e.g. iBeacons (Martin et al. 2014)) are used to provide the location
ID to the mobile applications over BLE.

Similar scenarios exist in domains such as museum visits of user groups, where recom-
mendations can take into account aspects, such as time available, accessibility of objects
at specific times, and personal interests. Visitors of museums are often overwhelmed by
the information available in the space they are exploring. Therefore, finding relevant art-
works to see in a limited amount of time is a crucial task. Such context-based recommender
systems (Benouaret and Lenne 2015) for mobile devices adapt to the users profiles and is
sensitive to their context (location, time, expertise, etc.). These recommenders improve the
visitors’ experience and help them build their tours on-site according to their preferences
and constraints.

The authors of Cha et al. (2016), Martino and Rossi (2016), and Yavari et al. (2016)
show how basic Artificial Intelligence (AI) approaches such as planning and clustering can
be exploited for offering public services in a personalized fashion. They do not include
basic recommendation approaches but, for example, scheduling and clustering that empower
functionalities such as route planning and recommending points of interest.

Bahirat et al. (2018) present a data-driven approach to the development of a privacy-
setting interface for IoT devices. By applying machine learning techniques to an existing
dataset of users, a set of “smart” default profiles are generated. Using these smart profiles,
privacy settings are recommended to users. The accuracy of their privacy-setting predictions
is around 82%.

3 Amotivating example: IoT for the smart home

The motivation for our study came from the needs of recommender systems for our IoT
gateway project AGILE. We present a IoT for the smart home illustration in Fig. 2 as the
motivating example throughout the paper.

In this smart home example, a user (Alex) installs an AGILE gateway to make his home
smarter. After that, Alex buys a gas and a temperature sensor, connects them to his gateway
then connects via the local network to the management user interface of his gateway on
the web browser of his computer. At this stage, Alex needs to receive some app, device
or communication protocol (BLE, zigbee, etc.) recommendations according to the overall
settings on the gateway.

Moreover, when Alex wants to extend his smart home with a pollution monitoring
system, he needs a special support for choosing the sensors and configuring the system
properly. He may also need more help for the workflow development if he has very low
knowhow about developing workflow with his new pollution monitoring sensors.

We explain how these recommendation needs for apps, devices, protocols, and work-
flows/nodes can be addressed based on Alex’s smart home using recommendation technolo-
gies in Sections 4 and 5.

Journal of Intelligent Information Systems

Fig. 2 An IoT based smart home on the basis of the AGILE gateway. All measured data from IoT devices
(motion sensor, light sensor, etc.) are collected on the AGILE gateway over various connection protocols such
as 5G, BLE, LORA, and ZigBee. Alex can monitor the collected data or edit gateway settings by connecting
to his smart home gateway via WAN/LAN. He can install applications (e.g. fire alarm app) or connect various
devices (e.g. gas sensor) to his AGILE gateway to extend his smart home. He can use a cloud service to
export his smart home data to utilize powerful and online cloud based applications

4 Basic recommendation technologies in IoT

In the IoT context, recommender systems can support scenarios such as the recommenda-
tion of apps, services, sensor equipment, and IoT workflows (Felfernig et al. 2016). In the
following subsections, we show how basic recommendation algorithms can be applied in
IoT contexts. For a detailed discussion of underlying recommendation algorithms we refer
to Jannach et al. (2010).

4.1 Collaborative filtering

Collaborative filtering (Konstan et al. 1997) is based on the idea of word-of-mouth promo-
tion, i.e., the opinion of users with similar preferences plays a major role in a decision. These
users are also denoted as nearest neighbors, i.e., users with similar preferences compared
to the current user. The first step of a collaborative filtering recommender is to identify the
k-nearest neighbors7 and to extrapolate the preferences of the current user from the ratings
of nearest neighbors using Formula (1).

similarity(itema, itemb) = 1

1 + Σn
i=1,i∈users |eval(itema) − eval(itemb)| (1)

In order to recommend new apps for Alex’s smart home gateway (see Section 3), a recom-
mender can provide a list of (additional) apps that can be of relevance on the basis of a given

7k represents the number of users with similar ratings compared to the current user.

Journal of Intelligent Information Systems

Table 1 Collaborative filtering based app recommendation based on gateway profiles

Gateway profiles

Devices Apps

Profile Temp.
sensor

Motion
sensor

Gas
sensor

Camera Temp.
alarm

Fire
alarm

Thief
alarm

Gas
alarm

user1 1.0 1.0 1.0

user2 1.0 1.0 1.0

user3 1.0 1.0 1.0 1.0

Alex 1.0 1.0 1.0 1.0

The apps fire alarm and thief alarm can be recommended to Alex since they are installed on gateways with
the same devices available on the local gateway

local gateway configuration (e.g., devices and drivers). Collaborative filtering can deter-
mine such recommendations on the basis of gateway profile data collected in anonymous
form. A simplified example of a related recommendation approach8 is given in Table 1.
In this context, information about configurations of other gateways is used to infer rele-
vant apps to be additionally proposed/installed on the local gateway. In our example, the
devices temperature sensor and gas sensor are connected to the Alex’s gateway. The instal-
lation bases 1 and 3 (profiles) include all the devices also connected to the local gateway but
include additional apps that are currently not installed on the local gateway (these are fire
alarm and thief alarm). Consequently, these apps represent recommendation candidates for
Alex.

There are a couple of similarity metrics used in the context of collaborative filtering sce-
narios for determining nearest neighbors (for details we refer to Jannach et al. (2010)). We
also want to emphasize that the examples provided in this article are using basic recom-
mendation approaches, for example, matrix factorization is a state-of-the-art algorithmic
approach to support collaborative filtering. For the purposes of our examples, we introduce
a simplified formula that supports the identification of k-nearest neighbors9 (see Formula
(1)). If applied to the example of Table 1, profiles are represented by items in Formula (1).

Alternatively, collaborative filtering can exploit the ratings ([0..5]) of users when inter-
acting with an app marketplace (in this context, users have to be associated with the items
contained in Formula (1)). The underlying idea is that gateways can be connected to app
marketplaces where users can select and download apps that are of interest for their local
installation. In this scenario, the evaluation data (ratings) of users serve as a basis for
determining recommendations (see Table 2).

In Table 2, user 1 (the nearest neighbor) has provided app evaluations which are similar
to those on Alex’s smart home gateway (see Section 3). Consequently, a collaborative rec-
ommender proposes apps for Alex which have been investigated by the nearest neighbor but
not by the current user (e.g., the pollution monitoring app).

8“1.0” denotes the fact that the device is installed on the corresponding gateway (profile).
9For simplicity we assume k = 1.

Journal of Intelligent Information Systems

Table 2 Collaborative filtering based app recommendation based on user ratings

User ratings to apps

Temp.
alarm

Fire
alarm

Thief
alarm

Gas
alarm

Heart
activity

Running
app

Poll.
mon.

Dog
mon.

user1 1.0 4.5 3.0

user2 2.0 4.5 2.5 3.5

user3 4.0 3.0 2.5 3.0

Alex 1.0 4.0 4.0

user-1 is the nearest neighbor of Alex. The pollution monitoring app has been rated by user-1 but has not
been rated by Alex and is therefore recommended

4.2 Content-based filtering

Content-based filtering (Pazzani and Billsus 1997) compares the content of already con-
sumed items with new items that can potentially be recommended to the user, i.e., to find
items that are similar to those already rated positively by the user using Formula (2).

similarity(user, item) = f eatures(user) ∩ f eatures(item)

f eatures(user) ∪ f eatures(item)
(2)

Another alternative for app recommendation is to implement a content-based recommen-
dation approach where apps can be recommended for installation if their required devices
(it is assumed that this information is given for each app) are “compatible” with the local
gateway configuration (profile).10

When applying a content-based filtering based approach, recommended items are deter-
mined on the basis of the similarity between the local gateway profile information (e.g., in
terms of installed devices) and the profile information of apps available, for example, on a
marketplace in the cloud. Similar to collaborative filtering, there are different types of simi-
larity metrics (see, e.g., Jannach et al. 2010). For the purposes of our examples, we introduce
a simplified formula that supports the identification of, for example, relevant apps for the
local gateway.

When we apply Formula (2), user is Alex’s gateway, item is each app, and features are
the devices of each app and the gateway. Therefore, it determines the similarity on the basis
of the information about installed devices.11 However, this approach can be extended to
include further information, for example, regarding installed modules and network protocols
available on the gateway. In our example of Table 3, the fire alarm app has the highest sim-
ilarity with the profile information of Alex’s smart home gateway (see Section 3), therefore
this app is recommended.

Note that content-based recommendation is often applied when the similarity between
textual information from different sources has to be determined. Therefore, the approach
presented in this article can be extended to the matching of text-based search criteria and
the textual description of apps.

10Please also note that it is possible to support scenarios where apps are recommended that do require
additional hardware/device driver components in order to work properly.
11“1.0” denotes the fact that the device is installed on the corresponding gateway (profile).

Journal of Intelligent Information Systems

Table 3 Content-based app recommendation

Apps Devices

Temp. sensor Camera Gas sensor ZigBee BLE WiFi

Thief alarm 1.0 1.0 1.0

Fire alarm 1.0 1.0 1.0 1.0

Temp. alarm 1.0 1.0

Alex’s gateway 1.0 1.0 1.0

According to Formula (2), the fire alarm app has the highest similarity to the local gateway profile

4.3 Utility-based recommendation

Utility-based recommendation (Felfernig and Burke 2008) is based on the idea that – given
a set of items – item ranking is determined on the basis of multi-attribute utility theory
(MAUT) (Winterfeldt and Edwards 1986). In this case, each item is evaluated with regard
to a set of interest dimensions. In the context of optimizing the used data transfer protocols,
example dimensions could be efficiency (measured in terms of transfer rates) and economy
(measured in terms of costs for data connections). Utility-based recommendation is often
combined with knowledge-based recommendation. In this context, customer-individual
preferences can also be learned by analyzing existing user interaction data (Jannach et al.
2010).

Modern embedded systems included in IoT scenarios support a rich set of connectivity
solutions (e.g., 3G, LTE, TD-LTE, FDD-LTD, WIMAX, and Lora). In this context, rec-
ommendation technologies play an important role when it comes to suggesting the best
connectivity configurations for the selected communication channel. The recommendation
can be based, for example, on location information, available connectivity, performance and
reliability requirements, and contractual aspects and costs. Gateway configurations can be
manually defined by users but can also be determined on the basis of a configurator that is
in charge of keeping the overall system installations consistent. A configurator (e.g., a con-
straint solver) can determine alternative configurations which have to be ranked. In order
to determine a ranking for alternative configurations, a MAUT-based approach can be used.
Examples of evaluation dimensions (dim) used in MAUT could be performance, reliabil-
ity, and costs using Formula (3). Depending on the current gateway configuration and the
usage context, a configurator can determine alternative re-configurations and rank them
accordingly.

utility(item, user) = Σd∈diminterest (user, d) × value(item, d) (3)

An example of the application of a utility-based approach is the following. Table 4
includes an example evaluation of connectivity protocols (BLE and ZigBee) to be used on
the gateway. Furthermore, Table 5 includes the personal preferences of Alex.

Table 4 Utilities of protocols
Protocol Performance Reliability Costs

BLE 9 5 2

ZigBee 5 8 3

Journal of Intelligent Information Systems

Table 5 User preferences w.r.t.
performance, reliability, and
costs (in between [0..1])

User Performance Reliability Costs

Alex 1.0 0.3 0.1

In order to recommend a connectivity protocol for Alex’s smart home gateway (see
Section 3), we can apply a utility function (see, e.g., Formula (3)). When we apply
the utility function, item stands for a protocol, and dimensions (dim) are the protocol
utilities. Therefore, BLE (utility(BLE,Alex)=10.7) is recommended rather than ZigBee (util-
ity(ZigBee,Alex)= 7.7) to Alex because the utility value of BLE for Alex is higher than the
utility value of ZigBee for Alex.

4.4 Group recommender systems

Group recommender systems (Felfernig et al. 2018) are based on the idea that recommen-
dations are not determined for a single user but the whole group should be satisfied with the
given recommendation (e.g., a family’s decision regarding a smart home solution). Recom-
mendations in this context are often determined on the basis of group decision heuristics.
For example, least misery is a heuristic that prefers recommendations with the property that
the misery of all group members is minimized as shown in Formula (4). In contrast, most
pleasure tries to maximize the pleasure of individual group members. Also in the context
of group recommender systems, hybrid approaches can be developed, i.e., individual group
recommendation heuristics can be combined with each other.

LM = max
(t∈I)

(min(t)) (4)

In scenarios where a group of users is in charge of making a decision, group rec-
ommenders can provide support (Masthoff 2011). For example, if Alex shares his smart
home with two home mates Bob and Tom, this group of smart home users is in charge of
selecting an appropriate smart home solution for the smart home where they live together.
User-specific evaluations of different smart home theft protection solutions on Google
Playstore12 are depicted in Table 6.

Let’s apply the group recommendation algorithm least misery (see Formula (4)) on given
group ratings. In Formula (4), t is an item, I a set of items, and LM is assumed to return a
recommended item for the group. If we apply least misery group recommendation, Salient-
Eye Home Security Alarm is recommended to the group since the minimum rating for this
item is 4.0 (which globally represents the best least misery value for all group members).

4.5 Hybrid recommendation

Hybrid recommendation (Burke 2002) is based on the idea of combining basic recom-
mendation approaches in such a way that one helps to compensate the weaknesses of the
other.

For example, when combining content-based filtering with collaborative recommen-
dation, content-based recommendation helps to recommend unrated items. If a user has
already consumed some items (e.g., purchased some IoT apps), the content description of a
new item can be compared with the descriptions of items already purchased by the user. If

12https://play.google.com/store/apps

https://play.google.com/store/apps

Journal of Intelligent Information Systems

Table 6 Selecting a smart home theft protection solution for Alex and his home mates (Bob and Tom)

Group ratings to smart home apps

SalientEye home
security alarm

Yale smart living
home

AtHome camera home
security video surveillance

Home security
camera - Alfred

Bob 5.0 4.0 5.0 3.0

Tom 4.0 5.0 3.0 3.0

Alex 4.0 3.0 4.0 3.0

SalientEye Home Security Alarm is the best option for the group according to the least misery recommenda-
tion

the new item is similar to some of the already consumed ones (e.g., installed apps), it can
be recommended to the user. Combining the recommendations of different algorithms, for
example, on the basis of a voting mechanism, can help to significantly increase prediction
quality (Jannach et al. 2010).

In the AGILE project, we have developed a hybrid recommender. A workflow recom-
mendation is calculated based on the contents of the active workflow, devices connected to
the user’s gateway, and other similar gateway profiles (their nodes, workflows, and devices).
We have combined the recommendation results of aforementioned basic approaches
content-based filtering, and collaborative filtering with the recommendation results of our
new approach SEQREQ: Sequences based Recommendation (see Section 5.1). As shown in
Fig. 3, the AGILE NodeRed13 development environment presents recommendation results
of workflows and nodes.

Node-Red14 workflows are composed of connected nodes where the order and type of the
nodes are important. One node sends its output to the next connected node as an input. For
example, in Fig. 4,15 the email node can not be used before the openweathermap node in the
workflow because it needs an input (the email text) coming from the connected predecessor
openweathermap and function nodes.

5 Advanced recommendation approaches in IoT

In this section, we introduce three new recommendation approaches which go beyond the
basic ones introduced in Section 3. These approaches have been developed to support
specific requirements of the use cases in the AGILE project.

5.1 SEQREQ: Sequences based recommendation

In the AGILE project, in situations where sequences of recommendable items play impor-
tant roles, we required an alternative recommendation approach compared to the basic ones
introduced in Section 3. Thus, we have developed SEQREQ (Sequences based Recommen-
dation) which recommends items based on sequential pattern mining. In this subsection, we
first explain sequential pattern mining, then show on the basis of a node recommendation

13https://nodered.org/
14https://nodered.org/
15http://developers.sensetecnic.com/article/a-node-red-flow-to-monitor-the-weather/

https://nodered.org/
https://nodered.org/
http://developers.sensetecnic.com/article/a-node-red-flow-to-monitor-the-weather/

Journal of Intelligent Information Systems

Fig. 3 The AGILE Node-Red development environment of Alex’s smart home gateway (see Section 3).
Hybrid recommendation is applied to recommend workflows and nodes which are the displayed in the
workflow tab

example from the AGILE Node-Red16 development environment how SEQREQ can be used
based (see Fig. 3).

Sequential pattern mining (Han et al. 2001; Zaki 2001) is used for finding sequential
patterns (sequences). Various algorithms have been proposed to find such patterns. For
example, when analyzing user behaviors, a sequential pattern mining algorithm may find
that many customers also buy a gas sensor, after having purchased a temperature sen-
sor. Therefore, buying a gas sensor after a temperature sensor is a common sequence as:
[temperature sensor, gas sensor].

SEQREQ is useful in cases where the sequence of items are important. We explain
SEQREQ on the basis of a workflow development use case from the AGILE project where
sequences (or orders) are very important. In such a setup, we can find many common node
sequences in the workflow repository. By searching common sequences of nodes in a work-
flow repository, we can build a look-up table with sequences an their occurrence frequencies
(the number of observations) and distances (the number of links between two nodes). For
example, in Fig. 4, the distance (the number of links) between the nodes openweathermap
and email is 2. If there is another workflow in the repository which includes the nodes open-
weathermap and email with a distance 4, then the average distance of the nodes become
(2 + 4) ÷ 2 = 3. Table 7 includes an example of the application of pattern mining in the
context of workflows and nodes. This example is using only sequences with two nodes and
an active workflow which has any number of (> 1) nodes.

The recommender’s output is a list of nodes according to Formula (5). In this for-
mula, isF irstNodeInAWsequence−x is 1 if the first node of sequence-x is observed in the
active workflow (AW), otherwise it is 0. Freqsequence−x is the frequency of sequence-x

16http://agile-iot.eu/wiki/index.php?title=How to develop an App

http://agile-iot.eu/wiki/index.php?title=How_to_develop_an_App

Journal of Intelligent Information Systems

Fig. 4 An example sequence of nodes in a workflow. The first node openweathermap collects the weather
forecast from https://openweathermap.org/ and provides the data to the next the node. The next node function
(which is named as “if bad weather”) checks the forecast data whether it is clear or not (rainy, snowy, or
stormy). If the forecast says the weather is not clear, this function outputs a message to the next connected
node. Finally, the next node (email) sends the received input message by email to a specified email address

and Distsequence−x is the distance between the nodes in sequence-x. When this formula
is applied on Table 7, the list of the recommended nodes for Alex is {MSSQL, tingodb,
ovh sms}. These recommended nodes are from the sequences with Similarity > 0.

Similarity(sequence-x, AW) = Freqsequence-x

Distsequence-x
× isF irstNodeInAWsequence-x (5)

5.2 CONFREQ: Recommendations for configurators

Existing recommendation technologies focus on simple items, however there is also a need
for recommendation technologies for complex items. In the AGILE project, we have devel-
oped recommendation technologies to support configuration process for complex products
and services. CONFREQ provides recommendations of search heuristics to improve runtime
performance of configurators. In this subsection, first we explain the relationship between
configuration technologies and constraint satisfaction problems, then show how CONFREQ

can be applied on a constraint satisfaction problem from the smart home domain.
The configuration of a new gateway infrastructure requires configuration technologies

with integrated recommendation functionalities (Falkner et al. 2011). When starting a new

Table 7 Sequential patterns (sequences) of nodes from a Node-Red repository

Nodes Frequency Distance Similarity

sequence-1 [mqtt in, MSSQL] 112 5 22.4

sequence-2 [mqtt in, tingodb] 78 12 6.5

sequence-3 [http out, twitter] 102 8 0

sequence-4 [e-mail, ovh sms] 27 9 3

sequence-5 [openweathermap, email] 72 3 0

AW [mqtt in, http in, email] – –

Frequency is the number of observations of a sequence in the repository and Distance is the average distance
(number of links) between the nodes in related workflows. AW is the active workflow on Alex’s smart home
gateway (see Section 3)

https://openweathermap.org/

Journal of Intelligent Information Systems

configuration, the configuration environment should be able to exploit information about
already existing gateway installations in order to reuse some parts of the installation for the
new gateway. In this context, recommendation technologies have to be integrated in order
to guide search. Similar requirements exist in reconfiguration scenarios where the system
has to react on changes in the set of installed applications or connected sensors. In such
situations, for example, data transfer protocols have to be adapted in order to optimally take
into account changes in the operating environment.

Constraint Satisfaction Problem. A configuration problem can be formulated as a con-
straint satisfaction problem (CSP) (Tsang 1993) which is defined as a triple (V,D,C) where
V is a set of variables, D is set of domains for each variable, and C is a set of constraints.
The constraint set also includes the user requirements (REQ) if already provided by the
user. In order to find a solution for a CSP, there should be a correctly formed configuration
task (see Definition 1).

Definition 1 (Configuration Task.) A configuration task can be defined as a CSP (V, D, C).
V ={v1, v2, .. , vn} represents a set of finite domain variables. D ={dom(v1), dom(v2), .. ,
dom(vn)} represents a set of variable domains, where dom(vk) represents the domain of
variable vk . C = CKB ∪ REQ where CKB={c1, c2, .. , cq} is a set of domain specific con-
straints (the configuration knowledge base) that restricts the possible combinations of values
assigned to the variables in V. REQ={cq+1, cq+2, .. , ct } is a set of customer requirements,
which is also represented as constraints.

CONFREQ supports CSP solvers by recommending heuristics based on cluster specific
heuristic (Erdeniz et al. 2017). CONFREQ can support the configurator by recommending
where to start the solution search. In order to improve the runtime performance of CSP
solvers, search is guided by so-called variable and value ordering heuristics. CONFREQ

has been introduced to increase the runtime performance of CSP solvers based on learned
variable ordering heuristics. CONFREQ clusters past REQs using k-means clustering (see
Formula (6)) and calculates variable ordering heuristics for each cluster using a genetic
algorithm. Therefore, the heuristic of a cluster can be used for a new CSP (which is closer
to this cluster rather than other clusters). It has been shown that CONFREQ significantly
improves the runtime performance of the used CSP solver (Choco Solver (Prud’homme
et al. 2017)).

For example, when Alex (see Section 3) wants to extend his smart home’s pool with
new IoT based sensors or a IoT based pump, he needs a professional support for installing
the suitable devices and configuring them. Therefore, we developed a configuration recom-
mender using CONFREQ to increase the runtime performance of CSP solvers by the help of
the recommendation of heuristics.

His swimming pool can be configured with one of the available pool pumps as given in
Table 8. CONFREQ first clusters past user requirements based on K-means clustering.

Table 8 Product table with five
types of pool pumps where each
has three features (power in Watt,
price in Euro, and size in
Centimeter)

pump1 pump2 pump3 pump4 pump5

v1 (power) 1000 1000 600 600 1200

v2 (price) 120 140 100 100 160

v3 (size) 12 8.7 14.5 7.2 11

Journal of Intelligent Information Systems

Table 9 Six sets of user requirements (REQs) stored in previous configuration sessions

REQ1 REQ2 REQ3 REQ4 REQ5 REQ6

v1=1200 v1=1000 v1=1200 v1= − v1= − v1= −
v2=160 v2=140 v2= − v2=100 v2= − v2= 160

v3= − v3= − v3= − v3= − v3= 7.2 v3= −

Variables, shown with “−”, are not assigned by the user

K-means clustering is based on the minimization of distances between the cluster elements
and the mean values of clusters as shown in Formula (6), in this context k is the number of
target clusters, S is a cluster set, μi is the average value of cluster elements in the Si and x

is a cluster element in Si .

min

k∑

i=1

∑

x∈Si

‖Distance(x, μi)‖2 (6)

Euclidean n-distance is generally applied by K-means clustering as the distance mea-
surement equation between the cluster elements and mean values of clusters as shown in
Formula (7) where xi is the ith attribute in the cluster element x, yi is the ith attribute in the
cluster element y, and n is the number of attributes in one cluster element.

Distance(x, y) =
√√√√

n∑

i=1

(xi − yi)2 (7)

In our example, we use k-means clustering with number of clusters: k=2 as shown in
Table 9. Then, we obtain the clusters as shown in Table 10. CONFREQ applies Min-Max
Normalization (see Formula (8)) on REQs before clustering.

vi norm = vi − dom(vi)min

dom(vi)max − dom(vi)min

(8)

After calculating the clusters, CONFREQ learns cluster specific variable ordering heuris-
tics using supervised learning (Venturini 1993) based on a genetic algorithm (GA) (Erdeniz
et al. 2017) which uses a fitness function (see Formula (9)). This formula minimizes the
total runtime (τ) for finding the first solution for a CSP over all sets of user requirements in
a cluster.

min

(
τ =

n∑

i=1

runtime(solve(CSPi))

)
(9)

An individual is generated by the genetic algorithm in the form of an array which
includes all variables of the CSP. According to the defined parameters of the genetic algo-
rithm (the most important ones are: the maximum number of generations, and the mutation

Table 10 Two clusters generated for six sets of user requirements (see Table 9)

cluster1 cluster2

Items Centroid Items Centroid

REQ1,REQ2,REQ3 [1133,100,0] REQ5,REQ6,REQ4 [0,86.66,2.4]

Journal of Intelligent Information Systems

rate), it finds an individual which is the best of all individuals in the generated population
(see the fitness function Formula (9)).

Now, let us assume that the cluster-specific variable ordering heuristics are learned as
follows: h1:[v1,v2,v3] for cluster1 and h2:[v1,v3,v2] for cluster2. REQ new={v1=1000} is
a new set of user requirements based on the same pool-configuration problem and it is the
closest to cluster1 according to Formula (7). Consequently, we use the variable ordering
heuristic h1:[v1,v2,v3] for solving the corresponding CSP. Using this heuristic, the CSP
solver searches for a solution by instantiating the variables in the order of h1, which results
in the product pump1:(v1=1000,v2=1200,v3=1200). With the help of learned heuristics, a
solution can be found in a shorter time. A more detailed discussions of the experimental
results of our approach is presented in Erdeniz et al. (2017).

5.3 DIAGREQ: recommending diagnoses

In the AGILE project, we also developed recommender algorithms that provide support in
inconsistent situations. For this purpose, we developed DIAGREQ that provides recommen-
dations for resolving inconsistencies effectively in terms of runtime and accuracy. In this
subsection, first we introduce diagnosis problems, then show how DIAGREQ can be applied
on the basis of an example diagnosis problem about pollution-monitoring systems.

In the context of knowledge-based configuration, search interfaces allow the specifica-
tion of requirements (REQ) and display a solution if the requirements are consistent with
the recommendation knowledge base. However, in many cases no solution exists for a given
set of requirements and the user needs support in finding a way out of the “no solution could
be found dilemma” (Jannach et al. 2010).

In this context, diagnoses can be recommended that help to solve inconsistencies. When
a constraint set is inconsistent, there is no solution for the corresponding constraint sat-
isfaction problem (CSP) / configuration problem. In this case, a diagnosis algorithm can
be applied to find the cause of the inconsistency. A corresponding Customer Requirements
Diagnosis Problem (REQDiagnosis Problem) and Customer Requirements Diagnosis (REQ
Diagnosis) can be defined as follows:

Definition 2 (REQ Diagnosis Problem.) A customer requirements diagnosis problem (REQ
Diagnosis Problem) is defined as a tuple (CKB,REQ) where REQ = {c1, c2, ..., cm}
is the set of given customer requirements and CKB represents the constraints part of the
configuration knowledge base.

Definition 3 (REQ Diagnosis.) A REQ diagnosis for a REQ diagnosis problem
(CKB, REQ) is a set Δ ⊆ REQ, s.t. CKB ∪ (REQ − Δ) is consistent. Δ = {c1,c2,..,cn} is
minimal if there does not exist a diagnosis Δ′ ⊂ Δ, s.t. CKB ∪ (REQ − Δ′) is consistent.

For example, when Alex (see Section 3) wants to extend his smart home gateway with
pollution monitoring sensors, he needs a professional support for installing and configur-
ing these sensors to his home. Therefore, we developed a ramp-up configurator where Alex
is responsible for defining the requirements and the ramp-up configurator finds a solution
according to Alex’s requirements. The ramp-up configurator uses DIAGREQ to solve incon-
sistency situations in a reasonable time with a high prediction quality. In this example, the
knowledge base is a product catalog (see Table 11).

Moreover, we know about six previous monitoring station requirement specifications that
lead to an inconsistency, i.e., no solution could be found (see Table 12). Furthermore, this

Journal of Intelligent Information Systems

Table 11 Five types of air pollutant sensors where each has three features as sensitivity (ppm: parts per
million), price (euro), and size (millimeter)

SO2 sensor NO sensor PH3 sensor CO sensor H2S sensor

v1 (sensitivity) 1000 1000 600 600 1200

v2 (price) 14 12 10 10 16

v3 (size) 12 8.7 14.5 7.2 11

Sensors in the product table measure the level of the following pollutants; SO2: Sulfur Dioxide, NO: Nitric
Oxide, PH3: Phosphine, CO: Carbon Monoxide, H2S: Hydrogen Sulfide

table includes the information of selected products by other users after changing their initial
inconsistent requirements (see Table 13).

In order to find a diagnosis recommendation, we developed DIAGREQ (Atas et al.
2017) which can find diagnoses using cluster-specific constraint ordering heuristics that are
used by direct diagnosis search. In order to find heuristics, at first, DIAGREQ clusters the
inconsistent requirements (see Table 12) using k-means clustering. It applies Min-Max Nor-
malization (Visalakshi and Thangavel 2009) on REQs (see Formula (8)). After clustering
the normalized REQs, DIAGREQ uses supervised learning based on a genetic algorithm)
to find constraint orderings. An individual generated in the genetic algorithm is represented
as array of constraints of the CSP (e.g. [c2,c3,c1]). According to the defined parameters
of the genetic algorithm (maximum number of generations, mutation rate, etc.), it finds an
individual which is the best one among the other individuals in the generated population.
This individual has the best fitness value which is calculated using the fitness function (see
Formula (10) and Formula (11)).

min

(
τ =

n∑

i=1

runtime(Δi)

)
(10)

max

(
π = k=#(correct predictions)

n = #(predictions)

)
(11)

In supervised learning, runtime and accuracy of a diagnosis are calculated using the
requirement specifications in Table 12 and selected solutions (see Table 13). Based on
supervised learning, the corresponding learned constraint orderings are shown in Table 14.

Whenever Alex generates a new inconsistent requirements set (see Table 15), DIAGREQ

can be applied to restore the consistency. First, it finds the closest cluster to this new require-
ment set which is cluster1 and applies this cluster’s constraint ordering before running the
diagnosis algorithm. For example, for a accuracy-efficient solution we apply H1π shown
in Table 15. Then, DIAGREQ finds the diagnosis Δ. After eliminating Δ from REQ new,
REQ new diagnosed is obtained as shown in Table 15. Now a CSP solver can solve the

Table 12 Inconsistent
requirements (REQs) collected
from previous configuration
sessions of different users

user1 user2 user3 user4 user5 user6

REQ1 REQ2 REQ3 REQ4 REQ5 REQ6

c1 v1=1200 v1=1000 v1=1200 v1=600 v1=600 v1=1000

c2 v2=10 v2=16 v2=14 v2=12 v2=0 v2=12

c3 v3=12 v3=14.5 v3=11 v3=12 v3=11 v3=7.2

Journal of Intelligent Information Systems

Table 13 Sensors finally selected by users who install the monitoring station (after their specified inconsis-
tent requirements given in Table 12)

user1 user2 user3 user4 user5 user6

SO2 sensor SO2 sensor NO sensor H2S sensor CO sensor NO sensor

CSP of REQ new diagnosed. Finally, a CSP solver can find two solutions from the prod-
uct catalog (see Table 11): PH3 sensor and CO sensor. Since we used the accuracy-based
heuristics to diagnose this problem, the solutions have high probabilities to be accepted by
Alex. Related experimental results are presented in our previous work (Atas et al. 2017).

6 Selection of recommendation algorithms

The five basic approaches of collaborative filtering (CF), content-based filtering (CBF),
knowledge-based recommendation (KBR) (utility-based recommendation is also consid-
ered as a subtype of knowledge based recommendation since the utility function is indeed
a utility constraint (Felfernig et al. 2010)), and group recommendation (GR) are based
on different knowledge sources and also have different strengths and weaknesses – a
corresponding overview is shown in Table 16.

Easy setup Collaborative filtering and content-based filtering systems are easy to set up
since only basic information about item names, descriptions, and graphical representations
is needed – the same holds for group recommender systems which rely on pre-defined
heuristics to determine recommendations. Knowledge-based recommender systems require
a more detailed specification of the recommendation knowledge (represented in terms
of attributes, constraints, and/or similarity metrics) and also of the corresponding items
(semantic properties have to be specified).

Conversational approach Both, group recommender systems and knowledge-based rec-
ommender systems are often based on a conversational approach where users have to
provide answers to questions (preferences regarding the properties of alternatives) and rec-
ommender systems propose solutions (candidate items) which serve as a basis for further
user feedback. Critiquing-based recommender systems (Burke et al. 1997) support the spec-
ification of critiques which represent user feedback on the properties of an item currently
shown to the user. Constraint-based recommender systems allow the specification and re-
specification of preferences (similar to the concept of critiques) and then support users in

Table 14 Learned constraint ordering heuristics (H)

κ1 H1π : {c3, c2, c1}
H1τ : {c2, c3, c1}

κ2 H2π : {c1, c3, c2}
H2τ : {c1, c2, c3}

Runtime (τ) and precision (π) are calculated for each cluster (κi)

Journal of Intelligent Information Systems

Table 15 Alex generates a new inconsistent set of requirements (REQ new) which needs to be diagnosed

REQ new REQ new reordered Δ REQ new diagnosed

c1 v1=1200 v3=10 v3=10 −
c2 v2=10 v2=10 − v2=10

c3 v3=10 v1=1200 v1=1200 −

Its constraints are reordered using H1π before diagnosis. Then, REQ new diagnosed is obtained by elim-
inating Δ. When the corresponding CSP of REQ new diagnosed is solved, the solutions PH3 sensor and
CO sensor are found

situations where no solution can be identified (Felfernig and Burke 2008). Collaborative
filtering and content-based recommendation approaches are typically not used in the context
of conversational scenarios.

Adaptivity Both, collaborative filtering and content-based recommendation are more adap-
tive in the sense that new ratings provided by users are automatically taken into account.
Knowledge-based recommendation does not support this type of adaptivity since utility
schemes (Winterfeldt and Edwards 1986) are in most of the cases adapted manually, i.e.,
are not learned. Group recommender systems in their basic form (Felfernig et al. 2018) do
not take new evaluations of items into account.

Serendipity effects Serendipity characterizes a situation where a user is confronted with
relevant items he/she did not expect. Serendipity effects can be achieved primarily using
collaborative filtering and variants thereof (Koren et al. 2009). Since content-based recom-
mendation in its basic from does not take into account the preferences of other users, less
serendipity effects can be achieved with this approach. Serendipity effects can be some-
how achieved with knowledge-based recommenders, however, in this context serendipity
knowledge has to be encoded into the underlying recommendation knowledge base. In
critiquing-based systems, this encoding is part of the similarity metrics used to determine
new candidate items. Also in basic types of group recommender systems, the serendipity
rather depends on the encoding in corresponding group decision heuristics (Masthoff 2011).

Ramp-up problems Ramp-up problems occur if a recommendation algorithm relies on
initial information which is sometimes not available. For example, in collaborative filter-
ing, user preferences have to be available in terms of item ratings – if these ratings are

Table 16 Selection criteria for
recommendation algorithms Algorithms

Algorithm CF CBF KBR GR

Easy setup Yes Yes No Yes

Conversational No No Yes Yes

Adaptivity Yes Yes No No

Serendipity effects Yes No Yes No

Ramp-up problem Yes Yes No No

Transparency No No Yes No

High involvement items No No Yes Yes

Journal of Intelligent Information Systems

not available, no recommendations can be determined. Ramp-up problems primarily exist
in the context of collaborative filtering and content-based recommendation. In collabora-
tive filtering, users have to rate items in order to enable the algorithm to determine nearest
neighbors. In content-based recommendation, users have to specify which kinds of items are
perceived as interesting in order to enable the algorithm identify items with similar charac-
teristics. Knowledge-based recommendation does not have to deal with ramp-up problems
since the recommendation knowledge is already pre-specified (in terms of constraints, rules,
or similarity metrics). Similarly, group recommenders do not have a ramp-up issue since
recommendation calculation is based on pre-defined decision heuristics.

Transparency Transparency is a measure that specifies to which extent recommendations
can be explained to users. In collaborative filtering, explanations are based on the similar-
ity to nearest neighbors (this item is recommended since similar users also purchased this
one). Explanations in content-based recommendation scenarios are based on the similarity
between the recommended item and those already consumed by the user (this item is rec-
ommended since you purchased similar items in the past). In both cases, explanations can
be regarded as shallow, i.e., do not provide deep insights to the reasons of a specific item
recommendation. Group-based recommender systems generate explanations that strongly
depend on the used heuristics, for example, this item is recommended to the group since no
misery can be expected by one of the group members (Felfernig et al. 2017a). The highest
degree of transparency can be expected from knowledge-based recommendation approaches
where solutions can be explained on the basis of information gained from the underlying
reasoning process. Especially in the context of constraint-based recommendation, it is possi-
ble to generate explanations that help to understand as to why no solution could be identified
(Felfernig and Burke 2008).

High involvement items High-involvement items (Felfernig et al. 2017b) are items that
are selected and/or purchased in most of the cases after a careful consideration since the
impact of suboptimal decisions can be rather high. Examples of related items are IoT based
smart homes, IoT based animal monitoring stations, and IoT based pollution monitoring
stations. Both, collaborative filtering and content-based filtering are used in most of the
cases for recommending low-involvement items such as IoT apps, and IoT sensors. Group
recommender systems are exploited for scenarios ranging from decisions such as choos-
ing a smart home alarm system to complex products such as configuring a new pollution
monitoring station. Ratings related to high-involvement items are provided less frequently
which makes collaborative filtering and content-based recommendation less applicable (for
example, preferences regarding an apartment or a car could significantly change over time).

Recommender libraries Recommendation algorithms and heuristics are in many cases
regarded as a central intellectual property of a company and are therefore often not imple-
mented on the basis of existing recommendation libraries. Strands17 is a commercial
recommendation library supporting different types of recommendation algorithms for the
retail and finance sector. MyMediaLite18 is a .NET based recommendation library that
supports collaborative filtering. LensKit19 is a toolkit from the University of Minnesota

17strands.com.
18mymedialite.net.
19lenskit.org.

http://www.strands.com
http://www.mymedialite.net
http://www.lenskit.org

Journal of Intelligent Information Systems

that supports different kinds of collaborative filtering algorithms. Movielens20 is a related
non-commercial movie recommendation platform – it also provides a couple of publicly
available datasets that can be exploited for the evaluation of the predictive quality of rec-
ommendation algorithms. Apache Mahout21 is a machine learning environment that also
includes different types of collaborative filtering approaches. Choco22 is an example of
an open-source constraint library that can be exploited, for example, for the development
of constraint-based recommender applications. Another example of a constraint-based rec-
ommendation environment is WeeVis23 that supports the integration of constraint-based
recommender applications into Wiki pages. Finally, Choicla24 is a group recommender
environment that supports group decision making for non-configurable items.

7 Research issues

Scalability of algorithms In some scenarios, recommendation algorithms can be deployed
in the cloud which has no serious limitations regarding computational resources. Typical
examples of such a setting are the recommendation of IoT apps (e.g., located on some sort of
marketplace) and the recommendation of workflows (e.g., located in a workflow repository).
Recommendation functionalities that support the task of resource balancing or functional-
ities supporting the reconfiguration of a gateway installation should be located directly on
the gateway in order to be able to perform reconfigurations even in the case that the gate-
way is not connected to the Internet. Despite limited computational resources available on
gateways, recommendations have to be determined in an efficient fashion (Felfernig et al.
2016).

Datasets for evaluation purposes The development of recommendation technologies for
IoT scenarios is a rather young discipline and research in the field would strongly profit from
the availability of more IoT datasets that enable corresponding tests of, for example, the
prediction quality of recommendation algorithms. In the context of end-user development
support in IoT scenarios, datasets are helpful that include logs about the development of IoT
workflows on remote gateway installations. This information can be exploited to optimize
user support, for example, by predicting relevant code-fragments and sensors that should be
included.

Distributed data analysis The distributed nature of the Internet of Things and correspond-
ing high amounts of collected data are challenging existing data analysis methods (Stolpe
2016). While approaches to big data analytics (Chen et al. 2015) often follow the paradigm
of parallel and high-performance computing, analysis approaches in IoT scenarios are often
limited, for example, in terms of bandwidth and energy supply. This is the major motivation
for decentralized analysis algorithms that often have to work (partly) on data-generating IoT
devices.

20movielens.org.
21mahout.apache.org.
22choco-solver.org.
23weevis.org.
24choiclaweb.com.

http://www.movielens.org
http://www.mahout.apache.org
http://www.choco-solver.org
http://www.weevis.org
http://www.choiclaweb.com

Journal of Intelligent Information Systems

Context-aware recommendation approaches Compared to traditional context-based rec-
ommendation approaches, IoT scenarios increase the number of relevant context dimensions
(Felfernig et al. 2016). For example, in group-based scenarios (e.g., a group of tourists inter-
ested in a city round trip recommendation) example dimensions are not only related to the
items to be recommended (e.g., tourist destinations) but also to additional dimensions such
as information about potential traffic jams, weather forecasts, occupancy rates of destina-
tions, and availability of public transport (just to mention a few). All these aspects have
to be taken into account when building recommendation solutions which also requires the
integration of data sources. Recommendation and configuration technologies supporting the
ramp-up of IoT infrastructures have to take into account additional aspects such as topo-
logical information relevant for the IoT environment (e.g., in the case of animal monitoring
applications) and environmental data (e.g., in the context of air pollution monitoring). Such
aspects are not relevant in more traditional recommendation and configuration scenarios
(Felfernig et al. 2014).

8 Conclusions

In this article, we have provided an overview of existing recommendation approaches
besides our proposed recommendation techniques in the Internet of Things (IoT) domain.
First, we have given a short overview of existing work related to the application of
recommendation technologies in IoT scenarios. Thereafter, we have shown how basic
recommendation algorithms can be applied in simple IoT scenarios. Moreover, we have
described the challenges that we have faced in the AGILE project. To come over these
challenges, we have proposed three recommendation approaches SEQREQ, CONFREQ, and
DIAGREQ. SEQREQ provides intelligent workflow/node recommendations whereas CON-
FREQ and DIAGREQ increases runtime performance and prediction quality of CSP solvers.
We have shown how these new approaches can be applied in AGILE project’s use cases.
After that, we have explained how to select a recommendation approach based on the appli-
cation domain. Finally, we discussed further research challenges for recommender systems
in IoT.

Funding Information Open access funding provided by Graz University of Technology.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

Adomavicius, G., & Tuzhilin, A. (2015). Context-aware recommender systems, (pp. 191–226). Boston:
Springer. https://doi.org/10.1007/978-1-4899-7637-6 6.

Amato, F., Mazzeo, A., Moscato, V., Picariello, A. (2013). A recommendation system for browsing of multi-
media collections in the internet of things. In Bessis, N., Xhafa, F., Varvarigou, D., Hill, R., Li, M. (Eds.)
Internet of things and inter-cooperative computational technologies for collective intelligence, Studies
in Computational Intelligence, vol. 460. Springer.

Atas, M., Felfernig, A., Erdeniz, S.P., Reiterer, S., Shehadeh, A., Tran, T.N.T. (2017). Cluster-based constraint
ordering for direct diagnosis. In 19th international configuration workshop, p. 68.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-1-4899-7637-6_6

Journal of Intelligent Information Systems

Atzori, L., Iera, A., Morabito, G. (2010). The internet of things: A survey. Computer Networks, 54, 2787–
2805.

Bahirat, P., He, Y., Menon, A., Knijnenburg, B. (2018). A data-driven approach to developing iot privacy-
setting interfaces. In Proceedings of the 22nd International Conference on Intelligent User Interfaces.
ACM.

Benouaret, I., & Lenne, D. (2015). Personalizing the museum experience through context-aware recommen-
dations. In 2015 IEEE international conference on systems, man, and cybernetics (SMC), pp. 743–748.
IEEE.

Burke, R. (2002). Hybrid recommender systems: Survey and experiments. UMUAI Journal, 12(4), 331–370.
Burke, R.D., Hammond, K.J., Yound, B. (1997). The FindMe approach to assisted browsing. IEEE Expert,

12(4), 32–40.
Cha, S., Ruiz, M., Wachowicz, M., Tran, L., Cao, H., Maduako, I. (2016). The role of an iot platform in the

design of real-time recommender systems. In 2016 IEEE 3rd world forum on internet of things (WF-iot),
pp. 448-453. Reston, VA, USA.

Chen, F., Deng, P., Wan, J., Zhang, D., Vasilakos, A.V., Rong, X. (2015). Data mining for the internet of
things: Literature review and challenges. International Journal of Distributed Sensor Networks, 11(8),
431,047.

Erdeniz, S.P., Felfernig, A., Atas, M., Tran, T.N.T., Jeran, M., Stettinger, M. (2017). Cluster-specific heuris-
tics for constraint solving. In International conference on industrial, engineering and other applications
of applied intelligent systems, pp. 21–30. Springer.

Erdeniz, S.P., Maglogiannis, I., Menychtas, A., Felfernig, A., Tran, T.N.T. (2018). Recommender systems for
iot enabled m-health applications. In IFIP International conference on artificial intelligence applications
and innovations, pp. 227–237. Springer.

Falkner, A., Felfernig, A., Haag, A. (2011). Recommendation technologies for configurable products. AI
Magazine, 32(3), 99–108.

Felfernig, A., & Burke, R. (2008). Constraint-based recommender systems: Technologies and research issues.
In ACM International conference on electronic commerce (ICEC08), pp. 17-26. Innsbruck, Austria.

Felfernig, A., Mandl, M., Schippel, S., Schubert, M., Teppan, E. (2010). Adaptive utility-based recommenda-
tion. In International conference on industrial, engineering and other applications of applied intelligent
systems, pp. 641–650. Springer.

Felfernig, A., Hotz, L., Bagley, C., Tiihonen, J. (2014). Knowledge-based configuration: From research to
business cases, 1st edn. San Mateo: Elsevier/Morgan Kaufmann Publishers.

Felfernig, A., Friedrich, G., Jannach, D., Zanker, M. (2015). Constraint-based recommender systems. In
Recommender systems handbook, pp. 161–190. Springer.

Felfernig, A., Erdeniz, S.P., Azzoni, P., Jeran, M., Akcay, A., Doukas, C. (2016). Towards configuration
technologies for iot gateways. In International workshop on configuration 2016 (confWS’16), pp. 73-76.
Toulouse, France.

Felfernig, A., Atas, M., Tran, T.N.T., Stettinger, M., Erdeniz, S.P., Leitner, G. (2017a). An analysis of group
recommendation heuristics for high- and low-involvement items, pp. 335–344. Springer International
Publishing, Cham. https://doi.org/10.1007/978-3-319-60042-0 39.

Felfernig, A., Atas, M., Tran, T.N.T., Stettinger, M., Erdeniz, S.P., Leitner, G. (2017b). An analysis of
group recommendation heuristics for high-and low-involvement items. In International conference on
industrial, engineering and other applications of applied intelligent systems, pp. 335–344. Springer.

Felfernig, A., Boratto, L., Stettinger, M., Tkalčič, M. (2018). Group recommender systems: An introduction
SPRINGERBRIEFS IN ELECTRICAL AND COMPUTER ENGINEERING.

Finkenzeller, K. (2010). RFID handbook: Fundamentals and applications in contactless smart cards, radio
frequency identification and near-field communication. New York: Wiley.

Greengard, S. (2015). The internet of things. Cambridge: MIT Press.
Han, J., Pei, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M. (2001). Prefixspan: Min-

ing sequential patterns efficiently by prefix-projected pattern growth. In Proceedings of the 17th
international conference on data engineering, pp. 215–224.

Jannach, D., Zanker, M., Felfernig, A., Friedrich, G. (2010). Recommender systems – an introduction.
Cambridge: Cambridge University Press.

Konstan, J., Miller, B., Maltz, D., Herlocker, J., Gordon, L., Riedl, J. (1997). Grouplens: Applying
collaborative filtering to usenet news full text. Commission of the ACM, 40(3), 77–87.

Koren, Y., Bell, R., Volinsky, C. (2009). Matrix factorization techniques for recommender systems. IEEE
Computer, 42(8), 30–37.

Lee, J.S., Su, Y.W., Shen, C.C. (2007). A comparative study of wireless protocols: bluetooth, uwb, zigbee,
and wi-fi. In 33rd annual conference of the industrial electronics society, IECON 2007. IEEE 2007, pp.
46–51. IEEE.

https://doi.org/10.1007/978-3-319-60042-0_39

Journal of Intelligent Information Systems

Leitner, G., Felfernig, A., Fercher, A., Hitz, M. (2014). Disseminating ambient assisted living in the rural
area. Sensors, 14(8), 13,496–13,531.

Magerkurth, C., Sperner, K., Meyer, S., Strohbach, M. (2011). Towards context-aware retail environments:
An infrastructure perspective. In MobileHCI 2011, pp. 1-4. Stockholm, Sweden.

Maglogiannis, I., Ioannou, C., Tsanakas, P. (2016). Fall detection and activity identification using wearable
and hand-held devices. Integrated Computer-Aided Engineering, 23(2), 161–172.

Martin, P., Ho, B.J., Grupen, N., Munoz, S., Srivastava, M. (2014). An ibeacon primer for indoor localization:
Demo abstract. In Proceedings of the 1st ACM Conference on Embedded Systems for Energy-Efficient
Buildings, pp. 190–191. ACM.

Martino, S.D., & Rossi, S. (2016). An architecture for a mobility recommender system in smart cities.
Procedia Computer Science, 98, 425–430.

Mashal, I., Alsaryrah, O., Chung, T.Y. (2016). Performance evaluation of recommendation algorithms on
internet of things services. Physica A, 451, 646–656.

Masthoff, J. (2011). Group recommender systems, Recommender Systems Handbook, pp. 677–702.
Menychtas, A., Tsanakas, P., Maglogiannis, I. (2016). Automated integration of wireless biosignal collection

devices for patient-centred decision-making in point-of-care systems. Healthcare Technology Letters,
3(1), 34–40.

Munoz-Organero, M., Ramirez-Gonzalez, G., Munoz-Merino, P., Loos, C. (2010). A collaborative recom-
mender system based on space-time similarities. IEEE Pervasice Computing, 9(3), 81–87.

Pazzani, M., & Billsus, D. (1997). Learning and revising user profiles: The identification of interesting web
sites. Machine Learning, 27, 313–331.

Prud’homme, C., Fages, J.G., Lorca, X. (2017). Choco solver documentation.
Ray, P. (2015). Generic internet of things architecture for smart sports. In International conference on control,

instrumentation, and communication technologies (ICCICCT), pp. 405–410.
Srikant, R., & Agrawal, R. (1996). Mining sequential patterns: Generalizations and performance improve-

ments. Advances in Database Technology—EDBT’96, pp. 1–17.
Stolpe, M. (2016). The internet of things: Opportunities and challenges for distributed data analysis. ACM

SIGKDD Exlorations Newsletter, 18, 15–34.
Tsang, E. (1993). Foundations of constraint satisfaction. New York: Academic Press.
Valtolina, S., Mesiti, M., Barricelli, B. (2014). User-centered recommendation services in internet of things

era. In CoPDA2014 workshop. Como, Italy.
Venturini, G. (1993). Sia: a supervised inductive algorithm with genetic search for learning attributes based

concepts. In European conference on machine learning, pp. 280–296. Springer.
Visalakshi, N.K., & Thangavel, K. (2009). Impact of normalization in distributed k-means clustering.

International Journal of Soft Computing, 4(4), 168–172.
Winterfeldt, D., & Edwards, W. (1986). Decision analysis and behavioral research. Cambridge: Cambridge

University Press.
Yavari, A., Jayaraman, P.P., Georgakopoulo, D. (2016). Contextualised service delivery in the internet of

things. In 2016 IEEE 3Rd world forum on internet of things (WF-iot), pp. 454-459. Reston, VA, USA.
Zaki, M.J. (2001). Spade: an efficient algorithm for mining frequent sequences. Machine learning, 42(1),

31–60.

Journal of Intelligent Information Systems

Affiliations

Alexander Felfernig1 · Seda Polat-Erdeniz1 ·Christoph Uran1 · Stefan Reiterer1 ·
Muesluem Atas1 · Thi Ngoc Trang Tran1 ·Paolo Azzoni2 ·Csaba Kiraly3 ·
Koustabh Dolui3

Alexander Felfernig
alexander.felfernig@ist.tugraz.at

Christoph Uran
uran@ist.tugraz.at

Stefan Reiterer
reiterer@ist.tugraz.at

Muesluem Atas
muatas@ist.tugraz.at

Thi Ngoc Trang Tran
ttrang@ist.tugraz.at

Paolo Azzoni
paolo.azzoni@eurotech.com

Csaba Kiraly
kiraly@fbk.eu

Koustabh Dolui
k.dolui@fbk.eu

1 Institute for Software Technology, Inffeldgasse 16B/2, 8010 Graz, Austria

2 Eurotech Group, I-33020 Amaro, Italy

3 FBK CREATE-NET, via alla Cascata 56/D, 38123 Trento, Italy

mailto: alexander.felfernig@ist.tugraz.at
mailto: uran@ist.tugraz.at
mailto: reiterer@ist.tugraz.at
mailto: muatas@ist.tugraz.at
mailto: ttrang@ist.tugraz.at
mailto: paolo.azzoni@eurotech.com
mailto: kiraly@fbk.eu
mailto: k.dolui@fbk.eu

	An overview of recommender systems in the internet of things
	Abstract
	Abstract
	Introduction
	Related work
	A motivating example: IoT for the smart home
	Basic recommendation technologies in IoT
	Collaborative filtering
	Content-based filtering
	Utility-based recommendation
	Group recommender systems
	Hybrid recommendation

	Advanced recommendation approaches in IoT
	SeqReq: Sequences based recommendation
	ConfReq: Recommendations for configurators
	K-means clustering
	Euclidean n-distance

	DiagReq: recommending diagnoses

	Selection of recommendation algorithms
	Easy setup
	Conversational approach
	Adaptivity
	Serendipity effects
	Ramp-up problems
	Transparency
	High involvement items
	Recommender libraries

	Research issues
	Scalability of algorithms
	Datasets for evaluation purposes
	Distributed data analysis
	Context-aware recommendation approaches

	Conclusions
	References
	Affiliations

