3,837 research outputs found

    Alternative antibody for the detection of CA19-9 antigen: a European multicenter study for the evaluation of the analytical and clinical performance of the Access (R) GI Monitor assay on the UniCel (R) Dxl 800 Immunoassay System

    Get PDF
    Background: Gastrointestinal cancer antigen CA19-9 is known as a valuable marker for the management of patients with pancreatic cancer. Methods: The analytical and clinical performance of the Access(R) GI Monitor assay (Beckman Coulter) was evaluated on the UniCel(R) Dxl 800 Immunoassay System at five different European sites and compared with a reference method, defined as CA19-9 on the Elecsys System (Roche Diagnostics). Results: Total imprecision (%CV) of the GI Monitor ranged between 3.4% and 7.7%, and inter-laboratory reproducibility between 3.6% and 4.0%. Linearity upon dilution showed a mean recovery of 97.4% (SD+7.2%). Endogenous interferents had no influence on GI Monitor levels (mean recoveries: hemoglobin 103%, bilirubin 106%, triglycerides 106%). There was no high-dose hook effect up to 115,000 kU/L. Clinical performance investigated in sera from 1811 individuals showed a good correlation between the Access' GI Monitor and Elecsys CA19-9 (R = 0.959, slope = 1.004, intercept +0.17). GI Monitor serum levels were low in healthy individuals (n = 267, median = 6.0 kU/L, 95th percentile = 23.1 kU/L), higher in individuals with various benign diseases (n = 550, medians = 5.8-13.4 kU/L, 95th percentiles = 30.1-195.5 kU/L) and even higher in individuals suffering from various cancers (n = 995, medians = 8.4-233.8 kU/L, 95th percentiles = 53.7-13,902 kU/L). Optimal diagnostic accuracy for cancer detection against the relevant benign control group by the GI Monitor was found for pancreatic cancer {[}area under the curve (AUC) 0.83]. Results for the reference CA19-9 assay were comparable (AUC 0.85). Conclusions: The Access(R) GI Monitor provides very good methodological characteristics and demonstrates an excellent analytical and clinical correlation with the Elecsys CA19-9. The GI Monitor shows the best diagnostic accuracy in pancreatic cancer. Our results also suggest a clinical value of the GI Monitor in other cancers

    Using Synchronic and Diachronic Relations for Summarizing Multiple Documents Describing Evolving Events

    Full text link
    In this paper we present a fresh look at the problem of summarizing evolving events from multiple sources. After a discussion concerning the nature of evolving events we introduce a distinction between linearly and non-linearly evolving events. We present then a general methodology for the automatic creation of summaries from evolving events. At its heart lie the notions of Synchronic and Diachronic cross-document Relations (SDRs), whose aim is the identification of similarities and differences between sources, from a synchronical and diachronical perspective. SDRs do not connect documents or textual elements found therein, but structures one might call messages. Applying this methodology will yield a set of messages and relations, SDRs, connecting them, that is a graph which we call grid. We will show how such a grid can be considered as the starting point of a Natural Language Generation System. The methodology is evaluated in two case-studies, one for linearly evolving events (descriptions of football matches) and another one for non-linearly evolving events (terrorist incidents involving hostages). In both cases we evaluate the results produced by our computational systems.Comment: 45 pages, 6 figures. To appear in the Journal of Intelligent Information System

    The role of relatives in decisions concerning life-prolonging treatment in patients with end-stage malignant disorders: informants, advocates or surrogate decision-makers?

    Get PDF
    Background: This study examines the extent to which relatives of severely ill cancer patients are involved in the decision to limit treatment (DLT), their role in communicating patient wishes and the incidence of and reasons for disagreement with relatives. Patients and methods: This cohort study followed 70 patients with terminal cancer, for whom a limitation of life-prolonging treatment was being considered. ‘Embedded researchers' recorded patients' wishes and the relatives' roles and disagreements with DLT. Results: Although 63 out of 70 patients had relatives present during their care, only 32% of relatives were involved in DLT. Physicians were more likely to know the end-of-life (EOL) preferences for those patients who had visiting relatives than those without them (78% versus 29%, P = 0.014). Most relatives supported patients in voicing their preferences (68%), but one-third acted against the known or presumed wishes of patients (32%). Disagreements with patients' relatives occurred in 21% of cases, and predominantly when relatives held views that contradicted known patient preferences (71% versus 7%, P = 0.001). Conclusion: If relatives are to play an important part in EOL decision making, we must devise strategies to recognise their potential as patients' advocates as well as their own need

    Impact of phonons on dephasing of individual excitons in deterministic quantum dot microlenses

    Get PDF
    Optimized light-matter coupling in semiconductor nanostructures is a key to understand their optical properties and can be enabled by advanced fabrication techniques. Using in-situ electron beam lithography combined with a low-temperature cathodoluminescence imaging, we deterministically fabricate microlenses above selected InAs quantum dots (QDs) achieving their efficient coupling to the external light field. This enables to perform four-wave mixing micro-spectroscopy of single QD excitons, revealing the exciton population and coherence dynamics. We infer the temperature dependence of the dephasing in order to address the impact of phonons on the decoherence of confined excitons. The loss of the coherence over the first picoseconds is associated with the emission of a phonon wave packet, also governing the phonon background in photoluminescence (PL) spectra. Using theory based on the independent boson model, we consistently explain the initial coherence decay, the zero-phonon line fraction, and the lineshape of the phonon-assisted PL using realistic quantum dot geometries

    Hole motion in an arbitrary spin background: Beyond the minimal spin-polaron approximation

    Full text link
    The motion of a single hole in an arbitrary magnetic background is investigated for the 2D t-J model. The wavefunction of the hole is described within a generalized string picture which leads to a modified concept of spin polarons. We calculate the one-hole spectral function using a large string basis for the limits of a Neel ordered and a completely disordered background. In addition we use a simple approximation to interpolate between these cases. For the antiferromagnetic background we reproduce the well-known quasiparticle band. In the disordered case the shape of the spectral function is found to be strongly momentum-dependent, the quasiparticle weight vanishes for all hole momenta. Finally, we discuss the relevance of results for the lowest energy eigenvalue and its dispersion obtained from calculations using a polaron of minimal size as found in the literature.Comment: 13 pages, 8 figures, to appear in Phys. Rev.

    Dissociative recombination and electron-impact de-excitation in CH photon emission under ITER divertor-relevant plasma conditions

    Get PDF
    For understanding carbon erosion and redeposition in nuclear fusion devices, it is important to understand the transport and chemical break-up of hydrocarbon molecules in edge plasmas, often diagnosed by emission of the CH A^2\Delta - X^2\Pi Ger\"o band around 430 nm. The CH A-level can be excited either by electron-impact or by dissociative recombination (D.R.) of hydrocarbon ions. These processes were included in the 3D Monte Carlo impurity transport code ERO. A series of methane injection experiments was performed in the high-density, low-temperature linear plasma generator Pilot-PSI, and simulated emission intensity profiles were benchmarked against these experiments. It was confirmed that excitation by D.R. dominates at T_e < 1.5 eV. The results indicate that the fraction of D.R. events that lead to a CH radical in the A-level and consequent photon emission is at least 10%. Additionally, quenching of the excited CH radicals by electron impact de-excitation was included in the modeling. This quenching is shown to be significant: depending on the electron density, it reduces the effective CH emission by a factor of 1.4 at n_e=1.3*10^20 m^-3, to 2.8 at n_e=9.3*10^20 m^-3. Its inclusion significantly improved agreement between experiment and modeling

    Sharing Social Network Data: Differentially Private Estimation of Exponential-Family Random Graph Models

    Get PDF
    Motivated by a real-life problem of sharing social network data that contain sensitive personal information, we propose a novel approach to release and analyze synthetic graphs in order to protect privacy of individual relationships captured by the social network while maintaining the validity of statistical results. A case study using a version of the Enron e-mail corpus dataset demonstrates the application and usefulness of the proposed techniques in solving the challenging problem of maintaining privacy \emph{and} supporting open access to network data to ensure reproducibility of existing studies and discovering new scientific insights that can be obtained by analyzing such data. We use a simple yet effective randomized response mechanism to generate synthetic networks under ϵ\epsilon-edge differential privacy, and then use likelihood based inference for missing data and Markov chain Monte Carlo techniques to fit exponential-family random graph models to the generated synthetic networks.Comment: Updated, 39 page

    High-spin structure of Xe 134

    Get PDF
    A. Vogt et al. ; 12 págs.; 9 figs.; 1 tab.Detailed spectroscopic information on the N∼82 nuclei is necessary to benchmark shell-model calculations in the region. The nuclear structure above long-lived isomers in Xe134 is investigated after multinucleon transfer (MNT) and actinide fission. Xenon-134 was populated as (i) a transfer product in Xe136+U238 and Xe136+Pb208 MNT reactions and (ii) as a fission product in the Xe136+U238 reaction employing the high-resolution Advanced Gamma Tracking Array (AGATA). Trajectory reconstruction has been applied for the complete identification of beamlike transfer products with the magnetic spectrometer PRISMA. The Xe136+Pt198 MNT reaction was studied with the γ-ray spectrometer GAMMASPHERE in combination with the gas detector array Compact Heavy Ion Counter (CHICO). Several high-spin states in Xe134 on top of the two long-lived isomers are discovered based on γγ-coincidence relationships and information on the γ-ray angular distributions as well as excitation energies from the total kinetic energy loss and fission fragments. The revised level scheme of Xe134 is extended up to an excitation energy of 5.832 MeV with tentative spin-parity assignments up to 16+. Previous assignments of states above the 7- isomer are revised. Latest shell-model calculations employing two different effective interactions reproduce the experimental findings and support the new spin and parity assignments.The research leading to these results has received funding from the German BMBF under Contract No. 05P12PKFNE TP4, from the European Union Seventh Framework Programme FP7/2007–2013 under Grant Agreement No. 262010 - ENSAR, from the Spanish Ministerio de Ciencia e Innovación under Contract No. FPA2011-29854-C04, from the Spanish Ministerio de Economía y Competitividad under Contract No. FPA2014-57196-C5, from the Bonn-Cologne Graduate School of Physics and Astronomy (BCGS), from the UK Science and Technology Facilities Council (STFC), and from the US National Science Foundation (NSF). One of the authors (A. Gadea) has been supported by the Generalitat Valenciana, Spain, under Grant No. PROMETEOII/2014/019 and EU under the FEDER program.Peer Reviewe
    • …
    corecore