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Abstract
The formation of internal transport barriers in the vicinity of rational magnetic
surfaces in tokamaks with braided magnetic fields is studied for a simplified
model of the perturbed magnetic field with a broad spatial spectrum and a
monotonous shear profile. The island overlap criterion is used to derive
a condition for barrier formation. This condition links the amplitude and
the spectral width of the perturbation with the shear parameter. Numerical
experiments with the MHD Monte-Carlo code E3D, where the problem
of plasma heat conductivity is solved in 3D, confirm this formation of
transport barriers in the case of a monotonous shear profile. Assuming that
experimentally observed electron internal transport barriers are the result of
local reduction of electron heat transport due to the magnetic field braiding, the
amplitude and spectral width of magnetic perturbations are estimated for the
tokamak RTP.

1. Introduction

In various tokamak experiments, internal electron transport barriers (ITBs) have been observed
in the vicinity of rational magnetic surfaces (e.g. see [1]). The phenomenological analysis [2]
using a model with a locally stepwise reduced electron heat conductivity around the rational
surfaces describes these observations quite well. One possible reason for the formation of
ITBs is the local reduction of the anomalous transport caused by magnetic field perturbations.
The formation of transport barriers in the ergodic divertor where the artificial ‘anomalous’
transport due to magnetic field braiding is dominant has been observed experimentally [3] and
modelled numerically [3, 4]. The role of magnetic perturbations in the formation of ITBs has
been discussed, in particular, in [5, 6]. The fact that a decrease of the shear parameter increases
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the distance between magnetic islands and disjoints them has been used as an explanation for
the formation of experimentally observed transport barriers in the vicinity of the shear reversal
point if the rotational transform approaches the low-order resonance value but does not cross
it in this point. At the same time, it was stated in [5] that near-integer values of q do not play
a positive role in the case of a monotonous q profile. In a recent analysis of the possibility
of barrier formation in the case of a monotonous q profile using a ‘tokamap’ model for the
perturbed magnetic field [7], barriers have been identified near broken KAM surfaces with
‘most noble’ values of the rotational transform.

In this study, the formation of transport barriers is modelled using a simplified magnetic
field with broad poloidal and toroidal spatial spectra of the perturbation field. This model is
introduced in section 2. For such field spectra which are saturated exponentially with increasing
angular wavenumbers, the formation of ITBs near low-order rational magnetic surfaces is
shown in the case of a monotonous profile of ι = 1/q. The origin of the barriers is connected
with the fact that the distribution of the rational numbers over the real axis is not uniform. This
fact has been used in [8, 9] to show the appearance of transport barriers in the presence of the
electrostatic ion temperature gradient mode (ηi-mode) turbulence. In this paper, the increased
distance between a low-order rational number and its nearest neighbouring rational numbers
leads to the local reduction of the Chirikov overlap criterion below one. A simplified analysis
using the overlap criterion is presented in section 2 where the criterion of barrier formation,
equation (6), is derived following this simplified analysis. In section 3, this criterion is derived
in a more rigorous way, with the help of a canonical perturbation theory. In section 4, the role
of second harmonics of the perturbed Hamiltonian is estimated. Unlike the main harmonics
of the perturbation field, these harmonics are resonant inside the ‘barrier’ region where they
may overlap and cause a field line diffusion. However, the rate of this diffusion, as estimated
in section 5, is reduced compared to the field line diffusion rate in the region outside the
‘barrier’. In section 6, the analysis is verified through the numerical computation of the plasma
temperature profile around the ‘barrier’ region using the 3D Monte-Carlo fluid code E3D [10].
The results of this computation are also compared in this section with the predictions of the
Rechester–Rosenbluth model [11].

The criterion of barrier formation (6) can be used as an equation that links the amplitude
and spectral width of the perturbation magnetic field with experimentally observed anomalous
electron heat diffusivity. This is of special interest for cases in which neither the amplitude
nor the spectrum is measured experimentally. The analytical formulae for the heat diffusion
coefficient in a braided magnetic field, the Rechester–Rosenbluth formula in this case, provide a
further equation. So, one can solve for the two unknown quantities; the perturbation amplitude
ε and the poloidal spectral width m̄ which defines the perpendicular scale of perturbations.

Thus, the information about the amplitude and the spectral width of magnetic perturbations
can be obtained from experimental measurements of profiles of the electron temperature and
of the safety factor in the case where the electron transport barrier is formed near the threshold
of barrier formation. This seems to be the case in [1]. For this experiment, the spectral width
and the perturbation amplitude are obtained with the help of the equation set given in section 7.
Finally, the results are discussed in section 8.

2. Magnetic field model

Here, the problem is solved using a simplified problem geometry represented by a straight
periodic cylinder where the azimuth θ is the poloidal angle and the coordinate along the z-axis
is the toroidal angle ϕ ≡ z/R0, with 2πR0 being the cylinder period. The main magnetic field
is assumed to have constant shear, ι ≡ 1/q = r , where 0 < r < 1 is a dimensionless radius.
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The perturbation field is derived from a vector potential of the form

A = ezAz, Az ≡ Aϕ = εrBϕ

m̄

M∑
m=−M

N∑
n=−N

am,n sin(mθ − nϕ + αmn), (1)

with Bϕ = const and αm,n are constant phase values, and M and N satisfy M � m̄ and N � n̄,
respectively. Two kinds of spectra are considered in the following: a ‘simplified’ spectrum
with am,n = 1 and M = N = m̄ = n̄, and a ‘realistic’ spectrum with

am,n = exp

(
−m2

m̄2
− n2

n̄2

)
. (2)

The ‘simplified’ spectrum is used below in analytical studies, and both kinds of spectra are
used in the numerical modelling of heat conductivity. The perturbation field is obtained in the
form

Br

Bϕ

=
M∑

m=−M

N∑
n=−N

bm,n cos(mθ − nϕ + αm,n), bm,n = ε
m

m̄
am,n. (3)

In order to study the transition of such a system between regular and stochastic behavior
using the Chirikov island overlapping criterion, one needs to estimate the size of the island
structure near a given resonant magnetic surface with ι0 = n0/m0. One should take into
account all harmonics with certain helicity, m = km0, n = kn0, where k = ±1, ±2, . . . . The
equation for the magnetic surfaces takes the following form:

1

R0

∫ r

0
dr ′r ′

(
n0

m0
− ι(r ′)

)
+

∑
k

r

km0
bkm0,kn0 sin(k(m0θ − n0ϕ) + αkm0,kn0) = const. (4)

For an estimation of the sum in the second term in (4), it is assumed that the constant phase
values αm,n are distributed randomly. Using the estimation of the sum (43) in appendix B,
one obtains for this second term rbm0,n0m

−1
0 (2m̄/m0)

1/2 log1/2(m̄/m0). Thus, for small
perturbation amplitudes ε, the island width is given as

δrm0,n0 ≈ 2

(
R0|bm0,n0 |

|m0ι′|
)1/2 (

2m̄

m0
log

(
m̄

m0

))1/4

, ι′ ≡ dι

dr
= 1. (5)

The radial position of a resonant surface is rm0,n0 = n0/ι
′m0 = n0/m0. Therefore, the

particular chain of islands covers the radial interval rm0,n0 − δrm0,n0 < r < rm0,n0 + δrm0,n0 .
A function I (r) is defined so that it is equal to 1 if r satisfies this condition for at least one mode
(m0, n0). I (r) is equal to zero otherwise. Therefore, in the regions where I (r) = 1, one can
expect stochastic transport due to island overlapping and the formation of ergodic magnetic
field regions, while in the regions with I (r) = 0 no islands are present and transport should
not be increased, i.e. a transport barrier is formed.

In figures 1 and 2, the function I (r) is shown for two different values of the perturbation
amplitude ε together with resonant radii rm,n corresponding to low-order resonant surfaces,
m � 4, represented as vertical lines. Here, R0 = 1 in all numerical examples. One can
observe that with decreasing perturbation amplitude, gaps with no islands (up to the cut-off
of the spectrum) appear and become broader. These gaps first appear in the vicinity of low-
order resonant surfaces on both sides of the corresponding island chain. One can expect that
regular magnetic surfaces are formed first in these regions when the perturbation amplitude is
decreased. This is confirmed in figures 3 and 4 where the results of the Poincaré mappings are
compared with predictions of the overlapping analysis. For this mapping, up to 1000 poloidal
revolutions have been performed for a set of field lines starting at ϕ = 0 at 20 equidistant radial
positions in the interval 0.4 < r < 0.6. The field lines have been traced until they leave the
considered radial interval.
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Figure 1. Function I (r) for m̄ = 20 and ε = 10−4.
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Figure 2. Same as figure 1 for ε = 9 × 10−5.

In figure 5 the inverse poloidal wavenumber, 1/m, is plotted as a function of the resonance
position r = n/m for resonant modes within the range −M < m < M and −N < n < N

where M = N = 20. One can observe that only the highest modes with small values of
1/m are present in the vicinity of low-order resonances. With increasing M and N values,
more resonances corresponding to higher-order modes should appear in a closer vicinity of
the low-order resonance. However, these higher modes are not significant because they are
exponentially small in the case of a ‘realistic’ spectrum.

In order to derive the threshold value of the perturbation amplitude for an ITB formation
at some low-order resonance magnetic surface (ι(r0) = n0/m0), one has to find the distances
between the radial locations of the resonance (m0, n0) and the nearest resonance with different
helicity. The distance between r0 = n0/ι

′m0 and the radius of the nearest resonant mode is
	r = 	ι/|ι′| ≈ (|ι′|m0M)−1 ∼ (|ι′|m0m̄)−1. This estimate follows from inequalities (37) in
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Figure 3. Poincaré plot of the magnetic field and function I (r) for m̄ = 20 and ε = 2.6666×10−4.
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Figure 4. Same as figure 3 for ε = 1.3333 × 10−4.

appendix A and the assumption that m0 � M ∼ m̄. Comparing this distance to the radial size
of low-order island structures (5), one obtains a criterion for the barrier formation:

σb = 4 × 21/2|ι′|R0bm0,n0m̄
5/2m

1/2
0 log1/2

(
m̄

m0

)

≈ 4 × 21/2|ι′|εR0(m0m̄)3/2 × log1/2

(
m̄

m0

)
< 1, (6)

which links the perturbation amplitude ε, the spectral width m̄ and the shear ι′. This condition
is much easily realized for low values of m0. Therefore, ITBs should first form at the lowest
order resonant magnetic surfaces. When comparing figures 1 and 2, one can notice that new
‘barriers’ corresponding to resonances 1

4 and 3
4 with m0 = 4 appear during the transition from

ε = 10−4 to ε = 9 × 10−5. Estimating σb with m0 = 4, m̄ = 20 and ε = 10−4, one obtains
σb = 0.51. This is in agreement with (6) up to a numerical factor of order one.
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Figure 5. Locations of resonances.

3. Resonance overlapping: Hamiltonian analysis

By replacing the radius r with the canonical momentum I = r2/2, the magnetic field line
equations can be cast to the Hamiltonian form

dI

dϕ
= −∂H(I, θ, ϕ)

∂θ
,

dθ

dϕ
= ∂H(I, θ, ϕ)

∂I
, (7)

where the Hamiltonian is given as

H = H0(I ) + H1(I, θ, ϕ), H0 = ι′

3
(2I )3/2, H1 = −R0

Bϕ

Aϕ, (8)

and ϕ has the role of a time-like variable. For the ‘simplified’ spectrum one obtains

H1(I, θ, ϕ) =
m̄∑

m,n=−m̄

Hm,n sin(mθ − nϕ + αmn), Hm,n = εI 1/2, (9)

where ε = −√
2εR0/m̄. To eliminate the linear term in ε in the Hamiltonian through the

first iteration within the canonical perturbation theory (e.g. see [12]), one introduces the new
momentum Ī and the new angle θ̄ with the help of the generating function G(Ī , θ, ϕ) =
Ī θ + εg(Ī , θ, ϕ):

I = Ī + ε
∂g(Ī , θ, ϕ)

∂θ
, θ̄ = θ + ε

∂g(Ī , θ, ϕ)

∂Ī
. (10)

The new Hamiltonian is

H̄ = H(I, θ, ϕ) + ε
∂g(Ī , θ, ϕ)

∂ϕ

= H0(Ī ) + ε

(
(Ī )

∂g(Ī , θ, ϕ)

∂θ
+

∂g(Ī , θ, ϕ)

∂ϕ

)
+ H1(Ī , θ, ϕ) + H2, (11)
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where (Ī ) = ∂H0(Ī )/∂Ī = ι and H2 = O(ε2). Thus, eliminating linear terms in ε one
obtains

g(Ī , θ, ϕ) = Ī 1/2
m̄∑

m,n=−m̄

cos(mθ − nϕ + αmn)

m(Ī ) − n
. (12)

If the second of equations (10) can be resolved with respect to θ to give the unique solution
θ = θ(Ī , θ̄ , ϕ), then, up to linear order terms, the field lines will follow the invariant surface
Ī = const which separates the space in radial direction. This is possible if ∂θ̄/∂θ does not
change its sign, yielding the condition

ε

∣∣∣∣∂2g(Ī , θ, ϕ)

∂Ī ∂θ

∣∣∣∣ ≈ ε

∣∣∣∣∣Ī 1/2 d(Ī )

dĪ

m̄∑
m,n=−m̄

sin(mθ − nϕ + αmn)

((Ī ) − n/m)2

∣∣∣∣∣ < 1. (13)

Estimating in (13) the contribution of resonant terms at  = n0/m0 (the number of these
modes is 2m̄/m0) in the middle of the gap where |(Ī ) − n/m| ∼ 1/2m0m̄, one obtains the
condition

4 × 21/2εĪ 1/2 d(Ī )

dĪ
(m0m̄)2

√
m̄

m0
log

m̄

m0

= 4 × 21/2|ι′|εR0(m0m̄)3/2 log1/2 m̄

m0
= σb < 1, (14)

being identical to condition (6). Note that for the simplified spectrum in this section, the
qualitative derivation of the criterion (6) given in the previous section leads to (14) without
any additional factors. At the same time it is interesting to estimate the contribution from
resonances for the harmonics with high wavenumbers located in the vicinity of the gap where
(Ī ) < (n0m̄ − 1)/m0m̄ or (Ī ) > (n0m̄ + 1)/m0m̄. This quantity contains the sum (44)
which is estimated in appendix B. Taking again the value of Ī in the middle of the ‘barrier’
region, |(Ī )−n/m| ∼ 1/2m0m̄, one finds 2εĪ 1/2(d(Ī )/dĪ )m

3/2
0 m̄5/2 log1/2 m̄ < 1, which

is practically the same as (14).
The condition (6) is rather general and it is valid for spectra with perturbation amplitudes

bm,n increasing in the long wavelength region m � m̄ as (m/m̄)K where K � 1 and decreasing
exponentially in the short wavelength region m � m̄.

4. Second harmonics

Provided by (13), the difference between the old and new momenta is small, i.e. |I − Ī | is less
than the width of the gap. Indeed, estimating the derivative of the sum (12) entering (10) in the
same manner as sums (41) and (44) in appendix B, one gets |I − Ī | ∼ Ī 1/2m̄3/2m

1/2
0 ∼

σb(m0m̄ log1/2(m̄/m0) d/dI )−1 � σb < 1. Quadratic and higher-order terms of this
difference are retained in H2. These terms contain now resonant harmonics on the combination
frequencies (Ī ) = (n1 + n2 + · · ·)/(m1 + m2 + · · ·). These resonances are located inside the
‘barrier’ region (see figure 6), e.g. double resonances reduce the ‘barrier’ region by at least
a factor of two. For estimates, one can retain only second harmonics in H2 containing two
resonant denominators because they provide the highest contributions. This is the quadratic
term in the expansion of H0(I ). Putting θ = θ̄ in the generating function g used in (10),
one gets

H2(Ī , θ̄ , ϕ) ≈ ε2Ī

2

d(Ī )

dĪ

(
m̄∑

m,n=−m̄

sin(mθ̄ − nϕ + αmn)

(Ī ) − n/m

)2

. (15)
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Figure 6. Locations of the main (vertical lines with amplitude equal to 2) and second harmonic
(amplitude equal to 1) resonances.

First, one needs an estimate of that part of H2 which is independent of angles:

〈H2(Ī , θ̄ , ϕ)〉θ̄ ,ϕ ≈ ε2Ī

4

d(Ī )

dĪ

m̄∑
m,n=−m̄

1

((Ī ) − n/m)2

<
ε2Ī

4

d(Ī )

dĪ

(
2m̄

m0((Ī ) − n0/m0)2
+

m̄2

(Ī ) − (n0m̄ − 1)/m0m̄

− m̄2

(Ī ) − (n0m̄ + 1)/m0m̄

)
. (16)

This part provides a frequency shift of the order of

	 ≡ d

dĪ
〈H2(Ī , θ̄ , ϕ)〉θ̄ ,ϕ ∼ ε2Ī

4

(
d(Ī )

dĪ

)2

m̄4m2
0 ∼ σ 2

b (m̄m0)
−1 log−1/2 m̄

m0
� σb, (17)

which is small compared to  ∼ 1 inside the ‘barrier’ region. The radial scale length of this
frequency shift is small too, d	/dĪ ∼ m0m̄	 ∼ σ 2

b log−1/2(m̄/m0). The change of the
magnetic field shear, d/dĪ , will remain small as long as σb � 1. Therefore, one can neglect
this shift in further estimates.

The part of H2 which alternates with angles is presented in the form

H̃2(Ī , θ̄ , ϕ) ≡ H2(Ī , θ̄ , ϕ) − 〈H2(Ī , θ̄ , ϕ)〉θ̄ ,ϕ = Re
2m̄∑

m,n=−2m̄

H (2)
mn exp(i(mθ̄ − nϕ)), (18)

where H(2)
mn are complex amplitudes. As shown in appendix C, the amplitudes of resonant

harmonics located inside the barrier region, (n0m̄− 1)/m0m̄ < n/m < (n0m̄ + 1)/m0m̄, have
the following order of magnitude:

H(2)
mn ∼ ε2Ī

d(Ī )

dĪ
m

3/2
0 m̄5/2. (19)

The second-order resonances are distributed densely over Ī inside the ‘barrier’ region
(see figure 6). The distance between them over Ī can be estimated as 	Ī ∼ (4m̄2d(Ī )/dĪ )−1.
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Dividing the width of the secondary islands, δĪ ∼ |H(2)
mn |1/2(d(Ī )/dĪ )−1/2, by this distance,

one obtains the usual Chirikov overlapping criterion for second-order resonances:

σ
(2)

b = δĪ

	Ī
∼ εĪ 1/2 d(Ī )

dĪ
m

3/4
0 m̄13/4 ∼ σb

(
m̄

m0

)3/4

log−1/2 m̄

m0
> 1. (20)

If σb is not too small, the overlapping condition (20) is realized due to a big factor (m̄/m0)
3/4.

Note that σb cannot be very small, σb(m̄/m0)
3/2 > 1, to ensure that ergodic magnetic field

layers can exist at all. Comparing the second-order island widths with the width of the ‘barrier’
region, 	Īb = (m0m̄d(Ī )/dĪ )−1, one notices that these islands are small:

δĪ

	Īb
∼ σb

(m0

m̄

)1/4
log−1/2 m̄

m0
� σb < 1. (21)

Therefore, one can describe the transport inside the ‘barrier’ region in terms of local magnetic
field line diffusion, like within ergodic magnetic field regions outside the barrier (see next
section).

Note that for small enough perturbation amplitudes, such that the size of the main helicity,
n0/m0, island structure is small compared to the barrier width, there exists a region with
further reduced diffusion which is free also from the second-order resonances (see figure 6).
In outer parts of this region (with respect to the main island chain), also third-order resonances
would be important. This structure is self-similar, and the amplitudes of each next order
resonance harmonics are smaller than the previous one. Finally, close to the main island
chain, the Chirikov overlap criterion will not be fulfilled and one can expect intact KAM
surfaces there.

5. Quasilinear diffusion

In the framework of quasilinear theory, the magnetic field lines described by the Hamiltonian (8)
are diffusing along ϕ over the momentum I with the diffusion coefficient

DQL = π

2

m̄∑
m,n=−m̄

m2|Hm,n|2δ(m − n). (22)

The corresponding magnetic field line diffusion coefficient in real space coordinates [13],
Dst = r−2(R2

0 + (ιr)2)−1/2DQL, is

Dst = πR0

2
√

1 + (ιr/R0)2

m̄∑
m,n=−m̄

|bmn|2δ(ιm − n). (23)

In the following, one also needs the quasilinear estimate for the Kolmogorov length [13] which
is given by

LK =
(

R0

ι′m̃

)2/3 (
2

Dst

)1/3

, m̃2 = π
√

1 + (ιr/R0)2

2DQL

m̄∑
m,n=−m̄

m4|Hm,n|2δ(m − n).

(24)

If the resonance overlapping is strong, such that modes with the same m values and with
neighbouring n values overlap, the summation over n is replaced by an integration giving

DQL = π

2

m̄∑
m=−m̄

m2|Hm,m|2 ≈ π

2

∫ m̄

−m̄

dmm2|Hm,m|2 = π

3
ε2Im̄3. (25)
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For Dst and m̃2, one obtains

Dst = πε2m̄R0

3
√

1 + (ιr/R0)2
, m̃2 = 3m̄2

5

√
1 + (ιr/R0)2, (26)

respectively. In addition to the simplified case, the integral can also be performed for the
‘realistic’ spectrum with am,n given by (2) if one puts M = N = ∞. The result differs only
by a numerical factor,

DQL = π3/2ε2Im̄3

8 × 21/2(1 + 2)3/2
, (27)

and for Dst and m̃2 one gets

Dst = π3/2ε2m̄R0

8 × 21/2(1 + ι2)3/2
√

1 + (ιr/R0)2
, m̃2 = 4

√
1 + (ιr/R0)2

3(1 + ι2)
m̄2, (28)

respectively.
In the case of weak overlapping when only a few neighbouring modes, e.g. k modes, from

the region outside the barrier overlap at a given radius, the delta function can be approximated
by a Gaussian (m̄/πk)1/2 exp(−m̄(m−n)2/k). Taking into account only k terms contributing
to the double sum in (22) and assuming m ∼ m̄, one obtains the estimate DQL ∼ ε2Im̄3. So,
the degree of overlapping does not change the order of magnitude of DQL.

In a similar manner, one can estimate the quasilinear diffusion coefficient due to the
second-order resonances in the ‘barrier’ region:

D
(2)
QL ∼ ε4Ī 2

(
d(Ī )

dĪ

)2

m3
0m̄

8. (29)

Here the field lines are diffusing across the levels of the modified action Ī . Taking the ratio of
this coefficient to the diffusion coefficient outside the ‘barrier’ region, one obtains

D
(2)
QL

DQL
∼ σ 2

b log−1

(
m̄

m0

)
. (30)

Thus, field line diffusion is significantly reduced inside the ‘barrier’ region near low-order
rational resonances in the case of σb � 1.

6. MHD modelling of heat conductivity

The full MHD transport properties of the chosen magnetic configurations have been studied
numerically. The 3D Monte-Carlo code E3D [10] has been used to solve the problem of heat
conductivity described by

∂Te

∂t
− ∇ · (D⊥∇Te + (D‖ − D⊥)hh · ∇Te) = 0, (31)

where h = B/B is the unit vector along the magnetic field. A unique feature of this code is
the possibility to solve nonlinear advection–diffusion equations of highly anisotropic transport
in an arbitrary magnetic field topology, including also partially or fully developed ergodicity.
This is achieved by a combination of a bi-cubic spline cell mapping technique and of a Monte-
Carlo solution method. See [10] for details and an extensive analysis of the numerical precision
achievable even for ergodic force fields.
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In the particular application for this paper, the stationary problem of heat propagation
from a constant source at the inner boundary located at r = 0.4 to an outer surface (the ‘wall’)
located at r = 0.6 is studied. The boundary condition at the wall is set to Te = 0. A constant
input heat flux Q = 40 W is prescribed at the inner boundary. The nonlinear dependence of the
parallel heat conductivity coefficient on the plasma temperature is not taken into account in this
case, and the background plasma temperature is chosen as Te = 25 eV. A fixed plasma density
of ne = 1013 cm−3 is assumed. All length scales are measured in centimetres. The ‘intrinsic’
perpendicular heat diffusion coefficient D⊥ = 23 cm2 s−1 is taken 1.45 × 109 times smaller
than the parallel diffusion coefficient D‖. The magnetic field parameters are m̄ = n̄ = 10 and
M = N = 20.

The results of E3D modelling are presented in figures 7–10 where the radial profiles of
temperature averaged over both the poloidal and the toroidal angles are shown. Figures 7 and 8
correspond to the ‘simplified’ model of the magnetic field with m̄ = 20 while figures 9 and 10

Figure 7. Temperature profile for ‘simplified’ model with ε = 2.6666 × 10−4 (σb = 0.58).

Figure 8. Same as figure 7 for ε = 1.3333 × 10−4 (σb = 0.29).
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Figure 9. Temperature profile for ‘realistic’ model with ε = 10−3 (σb = 0.64).
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Figure 10. Same as figure 9 for ε = 5 × 10−4 (σb = 0.32).

correspond to the ‘realistic’ model with m̄ = n̄ = 10 and M = N = 20, respectively.
The radial positions, n/ι′m and amplitudes, am,n, of resonant modes are shown in these
figures with vertical lines. The results are achieved by taking the magnetic field ‘as it is’,
i.e. without any stochastic parameterization such as it would be introduced by ‘magnetic field
diffusivities’.

Shaded areas in figures 7 and 8 represent ‘ergodic’ regions where I (r) = 1. In all the
cases, transport due to magnetic field braiding is dominant since for the unperturbed magnetic
field case, ε = 0, the temperature profile is close to a linear one. In that case, one gets a
temperature value at the inner boundary of 7.3 keV. From the distribution of spectral modes, it
is easy to identify the regions where barriers are formed. The calculated temperature gradient is
significantly higher in these regions than in the ‘ergodic’ shaded regions. ‘Barrier’ regions are
separated by the ‘plateau’ region with a very small temperature gradient. This region is formed
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at the place of the island chain corresponding to the ‘main’ helicity resonance m0 = 2 and
n0 = 1. The overlapping condition is marginal in the cases considered here. With decreasing
σb, the temperature gradient in ‘barrier’ regions is increasing with respect to the gradient in
ergodic magnetic field regions.

In figures 11 and 12 the effective ‘diffusion’ coefficient computed from the averaged
temperature profile and normalized to D⊥,

Deff

D⊥
= − Q

4π2R0rD⊥

(
dTe

dr

)−1

, (32)
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Figure 11. Normalized effective diffusion Deff/D⊥ (——) and the Rechester–Rosenbluth (- - - -)
coefficients for the ‘simplified’ magnetic field spectrum. Curves 1–ε = 1.3333 × 10−4, curves
2–ε = 2.6666 × 10−4.
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Figure 12. Normalized effective diffusion Deff/D⊥ (——) and the Rechester–Rosenbluth (- - - -)
coefficients for the ‘realistic’ magnetic field spectrum. Curves 1–ε = 10−3, curves 2–ε = 5×10−4.
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is compared to the normalized Rechester–Rosenbluth diffusion coefficient [11]:

DRR

D⊥
= Dst

Lc

D‖
D⊥

, Lc = 1

2
LK log

r2D‖
m̄2L2

KD⊥
. (33)

Here, Lc is the parallel correlation length. For the ‘simplified’ magnetic field model, Dst and
LK are given by (26) and (24), respectively. For the ‘realistic’ model, equation (28) should be
used instead of (26).

One can see that effective diffusion coefficients scale according to the Rechester–
Rosenbluth theory. The effective diffusion coefficient drops in the ‘barrier’ region. For both
models smaller values of ε and, respectively, smaller values of σb result in a stronger relative
reduction of the transport coefficient due to the magnetic field ergodization, to the level below
the ‘intrinsic’ perpendicular diffusion coefficient D⊥. This is in agreement with the scaling
in (30). The increase of the effective diffusion coefficient for r > 0.53 is due to the ‘laminar’
parallel diffusion along the field lines with a relatively short connection length [10].

Thus, the MHD modelling confirms the presence of transport barriers in the case of a
monotonous q profile.

7. Spatial scale and amplitude of magnetic perturbations

The very fact of formation of a transport barrier with given helicity allows us to estimate the
spatial scale of the magnetic field perturbation. It is given by the spectral width m̄. Here one
can assume that the observed anomalous electron heat diffusion coefficient χA is fully due to
magnetic field fluctuations. For the experimental conditions of RTP [1], transport is in the
Rechester–Rosenbluth regime, since, as it is checked below, the mean free path is smaller than
the parallel correlation length. Thus, one can put χA = DRR. Using (33) with Dst and m̃

given by (26) where small terms containing ι are neglected, one can express the perturbation
amplitude ε through m̄ explicitly. Substituting this in the barrier formation condition (14), one
obtains the estimate for spectral width m̄ and Kolmogorov length LK:

m̄ <
π2/3

8 × 31/2 51/6q ′R0n
2
0

(
χA

D‖
log

r2D‖
m̄2L2

KD⊥

)−1/2 (
log

m̄

m0

)−2/3

, (34)

LK = 21/2

(
5

3

)1/4

q

(
R0

q ′m̄

)1/2 (
χA

D‖
log

r2D‖
m̄2L2

KD⊥

)−1/4

, (35)

respectively. Here, q ′ = dq/dr and m0 = n0q. On RTP [1], the formation of a barrier at
the q = 3 resonant surface with m0 = 3 and n0 = 1 has been observed, in particular. To
describe this, one takes the following set of parameters: R0 = 72 cm, r = 8 cm, B = 24 kG,
ne = 2.4 × 1013 cm−3, Te = 600 eV, χA = 5 × 103 cm2 s−1, q ′ = 0.375 cm−1. For
the ‘intrinsic’ diffusion coefficient D⊥, the neoclassical expression in the banana regime,
D⊥ ∼ ν⊥q2ρ2

e (r/R0)
−3/2, is used. Here, ν⊥ and ρe are the collision frequency and the electron

Larmor radius, respectively. Solving (34) with direct iterations (for this purpose equation (34)
should be treated as an equality) one obtains m̄ ≈ 73, LK ≈ 1500 cm and Lc ≈ 4400 cm. The
last quantity helps to verify the validity of the Rechester–Rosenbluth theory, lc/Lc � 1, where
lc = vTe/ν⊥ is the mean free path (see [13]). One obtains lc/Lc ≈ 0.61 < 1, i.e. this theory
is marginally applicable. Thus, for the perpendicular wavenumber of magnetic perturbations,
k⊥ = m̄/r , one obtains the estimate k⊥ � 9.1 cm−1.

Using (24) and (28), one obtains for the field line diffusion coefficient Dst ≈ 6.3×10−8 cm
and for the perturbation amplitude ε ≈ 3.4 × 10−6, respectively. Assuming n̄ = m̄, this gives



Magnetic nature of electron transport barriers in tokamaks 999

for the perturbation magnetic field, Br ∼ ε(m̄n̄)1/2Bϕ , the estimate Br/Bϕ ∼ 2.5 × 10−4.
Note that this estimate is valid for the isotropic magnetic field spectrum, as given in (1). This
spectrum is a very weak function of the radius r . At the same time, as shown in appendix B,
only resonant modes with very low k‖ contribute to the process of formation of the ergodic
layer and of the transport barrier. Thus, if one assumes a strongly anisotropic spectrum with
very low k‖ but high k⊥ (as estimated above), the estimate for the perturbation magnetic field
is different, Br ∼ εm̄1/2Bϕ , which means Br/Bϕ ∼ 2.9 × 10−5.

In order to associate the value of the perpendicular wavenumber with a certain scale,
one has to compute the ratio of the electron plasma frequency to the speed of light, ωpe/c ≈
9.2 cm−1. This scale follows from the theory of [14, 15]. One can notice that this value is close
to the estimate of k⊥ obtained in the above analysis. At the same time, the obtained estimate
for the magnitude of the fluctuating field is within the maximum range reported in experiments
(see, e.g. [16]).

8. Discussion

In this analysis, it has been shown that heat transport caused by magnetic perturbations with
a broad spectrum over the perpendicular (poloidal) wavenumbers may exhibit the ‘barrier’
feature in the case of a monotonous profile of the safety factor. Simple magnetic field
models with such perturbation magnetic fields show barrier properties similar to those observed
experimentally. There are two main features of these models. First, the poloidal spectrum of
the perturbation field is rather broad. Therefore, the ergodization of magnetic surfaces distinct
from the low-order rational magnetic surfaces is achieved due to the overlapping of resonances
corresponding to high poloidal wavenumbers. Second, the amplitudes of radial components of
different Fourier modes, bm,n, are increasing with poloidal wavenumber within a certain range
(see equation (3). As a consequence, the width of islands formed by a particular mode does
not decrease within this range with increasing poloidal wavenumber. This results in robustness
of magnetic surfaces around the low-order rational magnetic surfaces. Such a feature is quite
different from general observations of Hamiltonian systems with narrow poloidal spectrum
where the broadest chaotic zones are formed around hyperbolic points of the main (low m)
islands. In the case of a broad perturbation field spectrum considered here, after the overlapping
of resonances with high m, much broader chaotic regions appear in addition to the chaotic zones
formed earlier at the place of destroyed separatrices of the low m islands, which are separated
from these regions by ‘barrier’ zones.

Using a simplified analysis with an island overlap criterion as well as a more detailed
Hamiltonian formalism, the criterion of barrier formation, equation (6), is derived. This
analysis is confirmed through the Poincaré mapping as well as through the direct 3D modelling
of heat transport using the Monte-Carlo fluid code E3D. Although the q profile used in the
analysis is decreasing with radius which is not typical for tokamaks, the results should not
change if more realistic q profiles are considered. This is due to the fact that only a local
behavior of q near low-order rational magnetic surfaces is responsible for the effect. The
q profile can be well approximated there by a linear function, as in the model which is used
here. The sign of the derivative of q does not enter the barrier formation criterion (equation (6));
therefore, the increasing q profile should show similar properties as the decreasing one.

In the phenomenological model of [2] barriers were introduced in close neighbourhood
of rational q values: below or above, but never extending across nor sitting on these rational
surfaces. In this analysis, barriers are located on the sides of rational surface too, while at
the position of the rational surface radial transport is strong due to the presence of the island
structure there. On the other hand, two barriers appear to be linked with a certain rational q
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value in the present model, that is different from [2] where only one barrier is linked to the
rational q value.

The particular physical mechanism responsible for the occurrence of magnetic
perturbations is not the subject of this paper. On the other hand, for the analysis presented
in section 7 it is essential that the spatial spectrum of the perturbation is independent of the
structure of the distribution of resonant modes over the radius. As discussed in [8, 9], such
spectra are possible if the superposition principle is valid for the spectral modes, i.e. the
turbulence is in the quasilinear regime. This might not be the case for the fully developed
turbulence, e.g. skin-depth turbulence considered in [14, 15], where the saturation is achieved
due to island overlapping, i.e. the resonance location pattern influences the amplitudes of the
modes. In this case, the transport in the ergodic magnetic field regions located between the
‘barriers’ cannot be described within quasilinear theory because island remnants will occupy
a significant volume in these regions. On the other hand, the saturation of modes from the
main (short-scale, m � 1) part of the magnetic field spectrum does not destroy the ‘barriers’
around the low-order resonant surfaces as long as overlapping does not occur for the modes
with low m. For example, such a situation is possible if those modes are stable. Another
possibility exists at the initial stage of instability development if the growth rate of the modes
with low m does not exceed the growth rate of the short-scale modes. In particular, this is true
for the resistive ballooning instability [17, 18].

Indeed, the evolution of the island width for a mode with given m and n, δrm,n, is described
in the long-mean-free-path regime by the following equation (see [17]):

dδrm,n

dt
= 0.27 	′c2

4πσ‖(1 − 2.1ε
1/2
t )

− 1.23 c2q3p′

σ‖ε
3/2
t B2q ′

1

δrm,n

, (36)

where σ‖ is the parallel plasma conductivity, εt = r/R0, p′ = d(nT )/dr and 	′ is the standard
tearing mode theory parameter. In (36) only the first coefficient depends on m because 	′

depends on m. However, at the initial stage of island growth when the δrm,n are still small, the
second term is dominant. As a result, the size of the islands at this stage is independent of m,
in accordance with the model of this paper. In course of time, overlapping will first start for the
modes with high m forming ergodic magnetic field regions separated by ‘barriers’. Finally, the
‘barrier’ zones are destroyed when the sizes of the low-order islands (low m = m0) become
of the order of the widths of the corresponding ‘barrier’ zones, 	r = q2/(|q ′|m0k⊥r) (see
section 2). Note that the temporal analysis of the electron temperature profile carried out in
[1] has shown that internal transport barriers appear (or are enhanced) during oblique pellet
injection and start to vanish after a finite time t . In particular, for the barrier located at the q = 3
surface, t ∼ 1 ms. Assuming that the growth of islands (at least those with low m) restarts after
the pellet injection, and estimating δr3,1 from (36) (neglecting the first term on the right-hand
side) together with the approximation for p′ ∼ nTe/r and using the same parameters as in
section 7, one obtains δr3,1 ∼ 0.36 cm. From 	r = δr3,1 follows the estimate k⊥ ∼ 2.8 cm−1.
Note that this estimate is still of the same order of magnitude as the estimate in section 7.

It is interesting to discuss the scaling of the barrier conditions (6) and (14) with size using
only a minimum number of assumptions on the scaling of the turbulence spectrum. First, one
can assume that the perpendicular scale of micro-turbulence is linked to some microscopic
parameter, such as the skin depth c/ωpe, rather than to the size of the device. Then, with
increasing size of the device, the poloidal spectral width is also increasing, m̄ = k⊥r ∼ r .
A second assumption is that the magnitude of the fluctuating field, Br/Bϕ , does not scale with
size. For an isotropic turbulence spectrum, n̄ ∼ m̄, this would mean that εm̄ stays constant.
In fact, this would also mean that the quasilinear diffusion coefficient (26) does not scale with
size either. In the case of a strongly anisotropic spectrum discussed at the end of the previous



Magnetic nature of electron transport barriers in tokamaks 1001

section, a constant magnitude of the fluctuating field would mean εm̄1/2 being constant. This
means that the quasilinear diffusion coefficient is increasing with size. However, in both cases
the barrier formation conditions (6) and (14) are becoming more restrictive with increased size
of the device (for a fixed value of m0, σb ∼ r1/2 in the first case and σb ∼ r in the second
case). Since RTP is a rather small device compared to modern tokamaks, and the barriers
were observed for small values of m0, one can conclude that for large tokamaks electron ITBs
can be achieved either at the inner radii or in regions where shear is considerably reduced.
In particular, conditions (6) and (14) can be realized most easily near the shear reversal point
in the case of an operation with reversed shear [5, 6]. Probably, in experiments on T-10 [6]
the micro-turbulence is not the only source of magnetic perturbations, since in cases when the
safety factor is crossing the low-order rational value near the shear reversal point, strong tearing
mode activity is observed. At the same time, if such crossing does not occur, but, instead, the
value of the safety factor in the reversal point just approaches the low-order rational number,
the electron ITB formation is observed. This is in full agreement with the theory given here.
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Appendix A. Distance between resonances

First, the minimum distance between the given irreducible fraction r0 = n0/m0 < 1 and all
other possible fractions r = n/m � 1 different from r0 should be estimated. Here, m, n, m0

and n0 are integers from the interval between 1 and M . This distance is limited by

1

m0M
� min

1�n�m�M
|r − r0| = min

1�n�m�M

∣∣∣∣nm0 − mn0

mm0

∣∣∣∣ � 1

m0(M − m0 + 1)
. (37)

The first inequality is obvious since the minimum value for |nm0 −mn0| is 1 and the maximum
value for m in the denominator is M . To prove the second inequality, one has to prove that a
pair of numbers m and n exists such that

nm0 − mn0 = 1, (38)

where m belongs to the interval M − m0 + 1 � m � M . Indeed, if there exists any
solution m(0), n(0) to equation (38), then the solution within the required interval is obtained as
m = m(0) − lm0, n = n(0) − ln0 where l is an integer number given by l = [(m(0) − M)/m0]
for m(0) � M and l = [(m(0) −M)/m0] + 1 for m(0) > M . Here, [. . .] denotes the integer part.
Such a solution is constructed using a recurrence relation. Introducing ik = [mk/nk] where
k = 0, 1, 2, . . . , one defines for k > 0 new coefficients mk and nk as well as new unknowns
m(k) and n(k) in equation (38) through the recurrence relations:

nk−1 = mk, mk−1 = ik−1mk + nk, n(k−1) = m(k), m(k−1) = ik−1m
(k) + n(k).

(39)

As a result, this equation is transformed to

n(k)mk − m(k)nk = (−1)k. (40)
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Finally, for a certain k value, one ends up with nk = 1. Then, the solution to equation (40) is,
for example, n(k) = 0, m(k) = (−1)k+1. With the help of the recurrence relation (39), one can
reconstruct m(0) and n(0). It should be mentioned that residual numbers of the division mk/nk

are never zero until nk = 1 if m0/n0 is an irreducible fraction, otherwise equation (40) would
mean that the pair nk−1 = mk , mk−1 = ikmk has a common factor mk and the same factor will
enter, finally, both m0 and n0. This means that r = n/m is an irreducible fraction as well. It
is easy to check that the solution to (38) is unique in the given interval.

Appendix B. Estimation of sums of randomly phased harmonics

Here, the expectation value of the maximum value of the sum of the harmonics with random
phases,

ξ = ξ(ϑ) =
k∑

m=−k

cos(mϑ + αm), (41)

where αm are random constant phases, is estimated. For large values of k, this number
is Gaussian distributed with a probability density p(ξ) = exp(−ξ 2/2〈ξ 2〉)/

√
2π〈ξ 2〉 for

ξ � k2/3, where 〈ξ 2〉 = k. Since the correlation length for ξ(ϑ) is 	θ ≈ 2π/k, one can
have 2π/	θ = k independent samples of ξ within the period. The estimate for the maximum
expected |ξ | value after k independent samplings, ξmax � √

k, is obtained integrating the tails
of the Gaussian distribution:

1

k
= 2

∫ ∞

ξmax

dξ p(ξ) ≈ 1

ξmax

√
2k

π
exp

(
−ξ 2

max

2k

)
. (42)

Since k � 1, one obtains approximately ξmax ≈ √
2k log k. The same estimate is valid for the

sum of the form

ξ = ξ(ϑ) =
k∑

j=−k

cos(m0jϑ + αj ), (43)

after the change m0ϑ → ϑ .
Now the variance of the following double sum containing all harmonics except those with

helicity n0/m0 has to be estimated:

ξ(θ, ϕ) =
∑
m,n

sin(mθ − nϕ + αmn)

((Ī ) − n/m)2
. (44)

Averaging over random phases, one obtains

〈ξ 2〉 = 1

2

∑
m,n

1

((Ī ) − n/m)4
<

1

2

∞∑
k=1

(
1

((Ī ) − (m̄n0 + 1)/m0m̄ − k/m̄2)4

+
1

((Ī ) − (m̄n0 − 1)/m0m̄ + k/m̄2)4

)

≈ 1

2

∫ ∞

0
dk

(
1

((Ī ) − (m̄n0 + 1)/m0m̄ − k/m̄2)4

+
1

((Ī ) − (m̄n0 + 1)/m0m̄ − k/m̄2)4

)

= m̄2

6

(
1

((Ī ) − (m̄n0 − 1)/m0m̄)3
− 1

((Ī ) − (m̄n0 + 1)/m0m̄)3

)
. (45)
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Here, replacing the double sum with a single one, it was assumed that outside the gap,
resonances are spaced densely with a distance ∼1/m̄2 between them (see figure 5). This
assumption somewhat overestimates the sum since the maximum density of simple fractions
m̄2 is assumed instead of the average one m̄2/2. In order to estimate the number of independent
samples of ξ(θ, ϕ), equation (44), one notes that this quantity is two dimensional. On the
other hand, introducing the helical angle θh = θ − ϕ/(Ī ) one notices that ξ(θh, ϕ) is fully
correlated over ϕ. Indeed, only harmonics with n/m − (Ī ) ∼ 1/m0m̄ effectively contribute
to (44). For the parallel wavenumber n‖ = n − (Ī )m = R0k‖, this gives the estimate
n‖ = m(n/m − ) ∼ 1/m0 < 1. Thus, one needs to take into account only the short
correlation length over θh which is 2π/m̄, and the number of samples is m̄, respectively.
Therefore, using the arguments given in the previous estimate, one obtains the maximum
estimate for ξ(θ, ϕ) as ξmax ≈

√
〈ξ 2〉 log m̄, where 〈ξ 2〉 is given by (45).

Appendix C. Amplitudes of second harmonics

The complex amplitudes entering (18) have the following form:

H(2)
mn = −ε2Ī

8

d(Ī )

dĪ

m̄∑
m1,n1,m2,n2=−m̄

δm,m1+m2δn,n1+n2

1

((Ī ) − n1/m1)((Ī ) − n2/m2)

×(exp(iαm1n1 + iαm2n2) + exp(−iα−m1−n1 − iα−m2−n2)

−2 exp(iαm1n1 − iα−m2−n2)). (46)

Note that only modes with m > m̄ can be resonant in the ‘barrier’ region. Here and below
only positive values of m are considered. For such modes, only the terms with both m1 > 0
and m2 > 0 contribute to the sum in (46). Therefore, the random phases entering different
exponents in (46) are independent, except the exponents of the same kind with interchanging
summation indices m1 and m2 (and n2 and n2). Calculating the variance of |H(2)

mn |, one obtains

〈|H(2)
mn |2〉 = 3ε4Ī 2

16

(
d(Ī )

dĪ

)2 m̄∑
m1,n1,m2,n2=1

δm,m1+m2δn,n1+n2

× 1

((Ī ) − n1/m1)2((Ī ) − n2/m2)2
. (47)

To use the results of appendix A, the wavenumbers m1,2 and n1,2 are re-numerated in the
following way:

m1,2 = m(0,j1,2) − m0k1,2, n1,2 = n(0,j1,2) − n0k1,2, k1,2 = 0, 1, 2, . . . , (48)

where m(0,j) and n(0,j) are the pair of numbers which satisfy

m0n
(0,j) − n0m

(0,j) = j, j = 0, ±1, ±2, . . . (49)

and m̄ − m0 + 1 � m(0,j) � m̄. Such solutions are constructed in analogy with solutions
from appendix A. In particular, m(0,0) = m0[m̄/m0]. These solutions have the property
m(0,j) +m(0,l−j) = m(0,l) +m(0,0) + i where i is either 0 or 1. In the following i = 0 is assumed.
One can check that combinations of m1 and m2 in the form (48) which correspond to the
resonances inside the barrier region should satisfy j1 + j2 = ±1 depending on the position
of the resonance with respect to n0/m0. One can use the sign ‘+’ without consequences for
the result. Then, presenting m = m(0,1) + m(0,0) − km0 and n = n(0,1) + n(0,0) − kn0, one
obtains in (47) m1 = m(0,j1) − m0k1, n1 = n(0,j1) − n0k1, m2 = m(0,1−j1) − m0(k − k1),
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n2 = n(0,1−j1) − n0(k − k1), and the summation is over j1 = 0, 1, 2, . . . and k1 = 0, 1, . . . , k.
Using (49) one can present

n1

m1
− n0

m0
= j1

m0(m(0,j1) − m0k1)
≈ j1

m0(m̄ − m0k1)
≈ j1

m0m̄
+

j1k1

m̄2
,

n2

m2
− n0

m0
≈ 1 − j1

m0m̄
+

(1 − j1)(k − k1)

m̄2
,

(50)

and, as a result, an estimate for the sum entering (47) is

m̄∑
m1,n1,m2,n2=1

δm,m1+m2δn,n1+n2

1

((Ī ) − n1/m1)2((Ī ) − n2/m2)2

∼
∞∑

j1=0

k∑
k1=0

(
 − n0

m0
− j1

m0m̄
− j1k1

m̄2

)−2

×
(

 − n0

m0
− 1 − j1

m0m̄
− (1 − j1)(k − k1)

m̄2

)−2

∼ m̄2

( − n0/m0)3
∼ m3

0m̄
5.

(51)

Estimating now |H(2)
mn | as a square root of the variance (47), one arrives at (19).
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