6,869 research outputs found

    Low frequency noise due to magnetic inhomogeneities in submicron FeCoB/MgO/FeCoB magnetic tunnel junctions

    Full text link
    We report on room temperature low frequency noise due to magnetic inhomogeneities/domain walls (MI/DWs) in elliptic submicron FeCoB/MgO/FeCoB magnetic tunnel junctions with an area between 0.0245 and 0.0675{\mu}m2. In the smaller area junctions we found an unexpected random telegraph noise (RTN1), deeply in the parallel state, possibly due to stray field induced MI/DWs in the hard layer. The second noise source (RTN2) is observed in the antiparallel state for the largest junctions. Strong asymmetry of RTN2 and of related resistance steps with current indicate spin torque acting on the MI/DWs in the soft layer at current densities below 5x10^5 A/cm2.Comment: 12 pages, 4 figure

    Anomalous Hall effect in the Co-based Heusler compounds Co2_{2}FeSi and Co2_{2}FeAl

    Full text link
    The anomalous Hall effect (AHE) in the Heusler compounds Co2_{2}FeSi and Co2_{2}FeAl is studied in dependence of the annealing temperature to achieve a general comprehension of its origin. We have demonstrated that the crystal quality affected by annealing processes is a significant control parameter to tune the electrical resistivity ρxx\rho_{xx} as well as the anomalous Hall resistivity ρahe\rho_{ahe}. Analyzing the scaling behavior of ρahe\rho_{ahe} in terms of ρxx\rho_{xx} points to a temperature-dependent skew scattering as the dominant mechanism in both Heusler compounds

    Influence of chemical and magnetic interface properties of Co-Fe-B / MgO / Co-Fe-B tunnel junctions on the annealing temperature dependence of the magnetoresistance

    Get PDF
    The knowledge of chemical and magnetic conditions at the Co40Fe40B20 / MgO interface is important to interpret the strong annealing temperature dependence of tunnel magnetoresistance of Co-Fe-B / MgO / Co-Fe-B magnetic tunnel junctions, which increases with annealing temperature from 20% after annealing at 200C up to a maximum value of 112% after annealing at 350C. While the well defined nearest neighbor ordering indicating crystallinity of the MgO barrier does not change by the annealing, a small amount of interfacial Fe-O at the lower Co-Fe-B / MgO interface is found in the as grown samples, which is completely reduced after annealing at 275C. This is accompanied by a simultaneous increase of the Fe magnetic moment and the tunnel magnetoresistance. However, the TMR of the MgO based junctions increases further for higher annealing temperature which can not be caused by Fe-O reduction. The occurrence of an x-ray absorption near-edge structure above the Fe and Co L-edges after annealing at 350C indicates the recrystallization of the Co-Fe-B electrode. This is prerequisite for coherent tunneling and has been suggested to be responsible for the further increase of the TMR above 275C. Simultaneously, the B concentration in the Co-Fe-B decreases with increasing annealing temperature, at least some of the B diffuses towards or into the MgO barrier and forms a B2O3 oxide

    Slice Energy in Higher Order Gravity Theories and Conformal Transformations

    Full text link
    We study the generic transport of slice energy between the scalar field generated by the conformal transformation of higher-order gravity theories and the matter component. We give precise relations for this exchange in the cases of dust and perfect fluids. We show that, unless we are in a stationary spacetime where slice energy is always conserved, in non-stationary situations contributions to the total slice energy depend on whether or not test matter follows geodesics in both frame representations of the dynamics, that is on whether or not the two conformally related frames are physically indistinguishable.Comment: 18 pages, references added, remark added in last Section related to the choice of physical frame, various other improvements, final version to appear in Gravitation and Cosmolog

    Longitudinal spin Seebeck coefficient: heat flux vs. temperature difference method

    Get PDF
    The determination of the longitudinal spin Seebeck effect (LSSE) coefficient is currently plagued by a large uncertainty due to the poor reproducibility of the experimental conditions used in its measurement. In this work we present a detailed analysis of two different methods used for the determination of the LSSE coefficient. We have performed LSSE experiments in different laboratories, by using different setups and employing both the temperature difference method and the heat flux method. We found that the lack of reproducibility can be mainly attributed to the thermal contact resistance between the sample and the thermal baths which generate the temperature gradient. Due to the variation of the thermal resistance, we found that the scaling of the LSSE voltage to the heat flux through the sample rather than to the temperature difference across the sample greatly reduces the uncertainty. The characteristics of a single YIG/Pt LSSE device obtained with two different setups was (1.143±0.007)107(1.143\pm0.007)\cdot 10^{-7} Vm/W and (1.101±0.015)107(1.101\pm0.015)\cdot 10^{-7} Vm/W with the heat flux method and (2.313±0.017)107(2.313\pm0.017)\cdot 10^{-7} V/K and (4.956±0.005)107(4.956\pm0.005)\cdot 10^{-7} V/K with the temperature difference method. This shows that systematic errors can be considerably reduced with the heat flux method.Comment: PDFLaTeX, 10 pages, 6 figure

    Dynamics and control of the expansion of finite-size plasmas produced in ultraintense laser-matter interactions

    Full text link
    The strong influence of the electron dynamics provides the possibility of controlling the expansion of laser-produced plasmas by appropriately shaping the laser pulse. A simple irradiation scheme is proposed to tailor the explosion of large deuterium clusters, inducing the formation of shock structures, capable of driving nuclear fusion reactions. Such a scenario has been thoroughly investigated, resorting to two- and three-dimensional particle-in-cell simulations. Furthermore, the intricate dynamics of ions and electrons during the collisionless expansion of spherical nanoplasmas has been analyzed in detail using a self-consistent ergodic-kinetic model. This study clarifies the transition from hydrodynamic-like to Coulomb-explosion regimes

    Investigation of potential diseases associated with Northern Territory mammal declines

    Get PDF
    There is compelling evidence of broad-scale declines in populations of small terrestrial native mammals in northern Australia, including the Top End of the Northern Territory (NT) over the past 20 years. Causes under consideration include changed fire regimes, introduced fauna (including predators) and disease. To date information on health and disease in northern Australian mammals has been limited. Disease is increasingly recognised as a primary driver of some wildlife population declines and extinctions e.g., Tasmanian devil facial tumour disease, white nose syndrome in bats and chytrid fungus in amphibians. Disease has been identified as a risk factor for extinction in declining and fragmented wildlife populations globally, particularly in situations of increased environmental stressors, changing ecosystems, arrival of new vertebrate threats or climate change. Unless wild populations are studied in detail over long periods of time, the effects of disease are easily overlooked and may be difficult to determine. This study is the largest and most comprehensive study of health and disease in small mammals in northern Australia and is one of a small number of studies worldwide to have approached investigation of wildlife populations in this comprehensive manner

    Electronic and magnetic structure of epitaxial NiO/Fe3_3O4_4(001) heterostructures grown on MgO(001) and Nb-doped SrTiO3_3(001)

    Get PDF
    We study the underlying chemical, electronic and magnetic properties of a number of magnetite based thin films. The main focus is placed onto NiO/Fe3_3O4_4(001) bilayers grown on MgO(001) and Nb-SrTiO3_3(001) substrates. We compare the results with those obtained on pure Fe3_3O4_4(001) thin films. It is found that the magnetite layers are oxidized and Fe3+^{3+} dominates at the surfaces due to maghemite (γ\gamma-Fe2_2O3_3) formation, which decreases with increasing magnetite layer thickness. From a layer thickness of around 20 nm on the cationic distribution is close to that of stoichiometric Fe3_3O4_4. At the interface between NiO and Fe3_3O4_4 we find the Ni to be in a divalent valence state, with unambiguous spectral features in the Ni 2p core level x-ray photoelectron spectra typical for NiO. The formation of a significant NiFe2_2O4_4 interlayer can be excluded by means of XMCD. Magneto optical Kerr effect measurements reveal significant higher coercive fields compared to magnetite thin films grown on MgO(001), and a 45^{\circ} rotated magnetic easy axis. We discuss the spin magnetic moments of the magnetite layers and find that the moment increases with increasing thin film thickness. At low thickness the NiO/Fe3_3O4_4 films grown on Nb-SrTiO3_3 exhibits a significantly decreased spin magnetic moments. A thickness of 20 nm or above leads to spin magnetic moments close to that of bulk magnetite

    Matter sources for a Null Big Bang

    Full text link
    We consider the properties of stress-energy tensors compatible with a Null Big Bang, i.e., cosmological evolution starting from a Killing horizon rather than a singularity. For Kantowski-Sachs cosmologies, it is shown that if matter satisfies the Null Energy Condition (NEC), then (i) regular cosmological evolution can only start from a Killing horizon, (ii) matter is absent at the horizon, and (iii) matter can only appear in the cosmological region due to interaction with vacuum. The latter is understood phenomenologically as a fluid whose stress tensor is insensitive to boosts in a particular direction. We also argue that matter is absent in a static region beyond the horizon. All this generalizes the observations recently obtained for a mixture of dust and a vacuum fluid. If, however, we admit the existence of phantom matter, its certain special kinds (with the parameter w3w \leq -3) are consistent with a Null Big Bang without interaction with vacuum (or without vacuum fluid at all). Then in the static region there is matter with w1/3w\geq -1/3. Alternatively, the evolution can begin from a horizon in an infinitely remote past, leading to a scenario combining the features of a Null Big Bang and an emergent universe.Comment: 5 two-column pages, revtex4, no figures. One reference corrected. Final version accepted for publication in Class. Quantum Gra
    corecore