445 research outputs found

    Effect of local pressure transients on the deformations and stresses in cylindrical ducts. Volume I - Theory and design charts

    Get PDF
    Axially symmetric dynamic response solutions for cylinders subjected to pressure transients arising in propulsion system

    Diagnosis and classification of pediatric acute appendicitis by artificial intelligence methods: An investigator-independent approach

    Get PDF
    Acute appendicitis is one of the major causes for emergency surgery in childhood and adolescence. Appendectomy is still the therapy of choice, but conservative strategies are increasingly being studied for uncomplicated inflammation. Diagnosis of acute appendicitis remains challenging, especially due to the frequently unspecific clinical picture. Inflammatory blood markers and imaging methods like ultrasound are limited as they have to be interpreted by experts and still do not offer sufficient diagnostic certainty. This study presents a method for automatic diagnosis of appendicitis as well as the differentiation between complicated and uncomplicated inflammation using values/parameters which are routinely and unbiasedly obtained for each patient with suspected appendicitis. We analyzed full blood counts, c-reactive protein (CRP) and appendiceal diameters in ultrasound investigations corresponding to children and adolescents aged 0–17 years from a hospital based population in Berlin, Germany. A total of 590 patients (473 patients with appendicitis in histopathology and 117 with negative histopathological findings) were analyzed retrospectively with modern algorithms from machine learning (ML) and artificial intelligence (AI). The discovery of informative parameters (biomarker signatures) and training of the classification model were done with a maximum of 35% of the patients. The remaining minimum 65% of patients were used for validation. At clinical relevant cut-off points the accuracy of the biomarker signature for diagnosis of appendicitis was 90% (93% sensitivity, 67% specificity), while the accuracy to correctly identify complicated inflammation was 51% (95% sensitivity, 33% specificity) on validation data. Such a test would be capable to prevent two out of three patients without appendicitis from useless surgery as well as one out of three patients with uncomplicated appendicitis. The presented method has the potential to change today’s therapeutic approach for appendicitis and demonstrates the capability of algorithms from AI and ML to significantly improve diagnostics even based on routine diagnostic parameters

    Neural Network Modelling of Constrained Spatial Interaction Flows

    Get PDF
    Fundamental to regional science is the subject of spatial interaction. GeoComputation - a new research paradigm that represents the convergence of the disciplines of computer science, geographic information science, mathematics and statistics - has brought many scholars back to spatial interaction modeling. Neural spatial interaction modeling represents a clear break with traditional methods used for explicating spatial interaction. Neural spatial interaction models are termed neural in the sense that they are based on neurocomputing. They are clearly related to conventional unconstrained spatial interaction models of the gravity type, and under commonly met conditions they can be understood as a special class of general feedforward neural network models with a single hidden layer and sigmoidal transfer functions (Fischer 1998). These models have been used to model journey-to-work flows and telecommunications traffic (Fischer and Gopal 1994, Openshaw 1993). They appear to provide superior levels of performance when compared with unconstrained conventional models. In many practical situations, however, we have - in addition to the spatial interaction data itself - some information about various accounting constraints on the predicted flows. In principle, there are two ways to incorporate accounting constraints in neural spatial interaction modeling. The required constraint properties can be built into the post-processing stage, or they can be built directly into the model structure. While the first way is relatively straightforward, it suffers from the disadvantage of being inefficient. It will also result in a model which does not inherently respect the constraints. Thus we follow the second way. In this paper we present a novel class of neural spatial interaction models that incorporate origin-specific constraints into the model structure using product units rather than summation units at the hidden layer and softmax output units at the output layer. Product unit neural networks are powerful because of their ability to handle higher order combinations of inputs. But parameter estimation by standard techniques such as the gradient descent technique may be difficult. The performance of this novel class of spatial interaction models will be demonstrated by using the Austrian interregional traffic data and the conventional singly constrained spatial interaction model of the gravity type as benchmark. References Fischer M M (1998) Computational neural networks: A new paradigm for spatial analysis Environment and Planning A 30 (10): 1873-1891 Fischer M M, Gopal S (1994) Artificial neural networks: A new approach to modelling interregional telecommunciation flows, Journal of Regional Science 34(4): 503-527 Openshaw S (1993) Modelling spatial interaction using a neural net. In Fischer MM, Nijkamp P (eds) Geographical information systems, spatial modelling, and policy evaluation, pp. 147-164. Springer, Berlin

    A methodology for neural spatial interaction modelling

    Get PDF
    This paper presents a methodology for neural spatial interaction modelling. Particular emphasis is laid on design, estimation and performance issues in both cases, unconstrained and singly constrained spatial interaction. Families of classical neural network models, but also less classical ones such as product unit neural network models are considered. Some novel classes of product unit and summation unit models are presented for the case of origin or destination constrained spatial interaction flows. The models are based on a modular connectionist architecture that may be viewed as a linked collection of functionally independent neural modules with identical feedforward topologies, operating under supervised learning algorithms. Parameter estimation is viewed as Maximum Likelihood (ML) learning. The nonconvex nature of the loss function makes the Alopex procedure, a global search procedure, an attractive and appropriate optimising scheme for ML learning. A benchmark comparison against the classical gravity models illustrates the superiority of both, the unconstrained and the origin constrained, neural network model versions in terms of generalization performance measured by Kullback and Leibler`s information criterion. Hereby, the authors make use of the bootstrapping pairs approach to overcome the largely neglected problem of sensitivity to the specific splitting of the data into training, internal validation and testing data sets, and to get a better statistical picture of prediction variability of the models. Keywords: Neural spatial interaction models, origin constrained or destination constrained spatial interaction, product unit network, Alopex procedure, boostrapping, benchmark performance tests.

    Total factor productivity effects of interregional knowledge spillovers in manufacturing industries across Europe

    Get PDF
    The objective of this study is to identify knowledge spillovers that spread across regions in Europe and vary in magnitude for different industries. The study uses a panel of 203 NUTS-2 regions covering the 15 pre-2004 EU-member-states to estimate the impact over the period 1998-2003, and distinguish between five major industries. The study implements a fixed effects panel data regression model with spatial autocorrelation to estimate effects using patent applications as a measure of R&D output to capture the contribution of R&D (direct and spilled-over) to regional productivity at the industry level. The results suggest that interregional knowledge spillovers and their productivity effects are to a substantial degree geographically localised and this finding is consistent with the localisation hypothesis of knowledge spillovers. There is a substantial amount of heterogeneity across industries with evidence that two industries (electronics, and chemical industries) produce interregional knowledge spillovers that have positive and highly significant productivity effects. The study, moreover, confirms the importance of spatial autoregressive disturbance in the fixed effects model for measuring the TFP impact of interregional knowledge spillovers at the industry level.Total factor productivity, manufacturing industries, knowledge spillovers,patents, European regions, spatial econometrics

    Effect of local pressure transients on the deformations and stresses in cylindrical ducts. Volume II - User's manual for general purpose program

    Get PDF
    Users manual for general purpose digital computer program for predicting dynamic response of cylinders subjected to ramp and sinusoidal pressure transient

    Evaluating Neural Spatial Interaction Modelling by Bootstrapping

    Get PDF
    This paper exposes problems of the commonly used technique of splitting the available data in neural spatial interaction modelling into training, validation, and test sets that are held fixed and warns about drawing too strong conclusions from such static splits. Using a bootstrapping procedure, we compare the uncertainty in the solution stemming from the data splitting with model specific uncertainties such as parameter initialization. Utilizing the Austrian interregional telecommunication traffic data and the differential evolution method for solving the parameter estimation task for a fixed topology of the network model [ i.e. J = 9] this paper illustrates that the variation due to different resamplings is significantly larger than the variation due to different parameter initializations. This result implies that it is important to not over-interpret a model, estimated on one specific static split of the data. (authors' abstract)Series: Discussion Papers of the Institute for Economic Geography and GIScienc
    • …
    corecore