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Abstract

A novel modular product unit neural network architecture is presented to model singly

constrained spatial interaction flows. Modularity is seen as decomposition on the

computational level. The network is composed of two processing layers. The first layer

is implemented as a layer of functionally independent modules with identical

topologies. Each module is a feedforward network with two inputs, H hidden product

units and terminates with a single summation unit. The collective outputs of these

modules constitute the input to the second processing layer consisting of output units

that perform the flow prediction. The efficacy of the model approach is demonstrated

for the origin constrained case of spatial interaction using Austrian interregional

telecommunication traffic data. The model requires a global search procedure for

parameter estimation, such as the Alopex procedure. A benchmark comparison against

the standard origin constrained gravity model and the two-stage neural network

approach, suggested by Openshaw (1998), illustrates the superiority of the proposed

model in terms of generalisation performance measured by ARV and SRMSE.

Keywords: Origin constrained or destination constrained spatial interaction, neural

spatial interaction model, product unit network, Alopex procedure, benchmark

performance tests
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1 Introduction

The subject of spatial interaction is fundamental to economic geography and regional

science. Spatial interaction models are used to facilitate the explanation and prediction

of human and economic interaction over geographic space. That there have been

relatively few papers in this area in recent years is merely a function of the hiatus that

followed a very active period of theory development. The 1960s and 1970s saw a huge

outpouring of both theoretical and empirical work. These were the heady days of

Stewart and Warntz, Stouffer, Isard, Wilson and Alonso. The empiricism that eminated

from their theoretical and methodological contributions filled regional science and

geographical journals. The lull came not so much because interest decreased, but

because very little in the way of novel theoretical insights. One exception was the

excitement over the work of Fotheringham on competing destinations in the early 1980s

when several new models were developed and new perspectives added (Fischer and

Getis 1999).

In more recent years, the major influence stems both from the emerging data-rich

environment and from technological innovations. The powerful and fast computing

environment now upon us has brought many scholars to spatial interaction theory once

again, either by utilising evolutionary computation to breed novel forms of spatial

interaction models (see Openshaw 1988; Turton, Openshaw and Diplock 1997) or

network-based approaches to spatial interaction (see, for example, Openshaw 1993,

1998, Fischer and Gopal 1994, Black 1995, Fischer, Hlavackova-Schindler and

Reismann 1999, Bergkvist 2000, Reggiani and Tritapepe 2000, Mozolin, Thill and

Usery 2000) leading to neural spatial interaction models. Neural spatial interaction

models are termed neural in the sense that they have been inspired by neuroscience.

But they are more closely related to conventional spatial interaction of the gravity type

than they are to neurobiological models.

Interest in the recent past has largely focused on some crucuial issues in unconstrained

neural spatial interaction modelling (see, for example, Fischer, Hlavackova-Schindler,

and Reismann 1999, Fischer 2000). These models represent a rich and flexible family

of spatial interaction function approximators. But they may be of little practical value if

a priori information is available on accounting constraints on the predicted flows. The
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paper presents a novel neural network approach for the case of origin constrained or

destination constrained spatial interaction flows. The approach is based on a modular

connectionist architecture that may be viewed as a linked collection of functionally

independent neural modules with identical topologies [two inputs, H hidden product

units and a single summation unit], operating under supervised learning algorithms. The

prediction is achieved by combining the outcome of the individual modules using some

sort of the Bradley-Terry-Luce model as non-linear output transfer function multiplied

with a bias term that implements the accounting constraint. 

The efficacy of the model approach is demonstrated for the origin-constrained case by

using interregional telecommunication traffic data for Austria, noisy real world data of

limited record length. The Alopex procedure, a global search procedure, provides an

appropriate optimisation scheme to produce Least Square (LS)-estimates of the model

parameters. The prediction quality is measured in terms of two performance statistics,

average relative variances and the standardised root mean square error. A benchmark

comparison shows that the proposed model outperforms origin-constrained gravity

model predictions and predictions obtained by applying the two-stage neural network

approach suggested by Openshaw (1998).

The reminder of this paper is structured as follows. The next section provides some

background information relevant for spatial interaction modelling first, describes then

the basic features of unconstrained neural spatial interaction models and finally

discusses briefly how a priori information on accounting constraints can be treated from

a neural network perspective. Section 3 presents the network architecture and the

mathematics of the modular product unit neural network model. Moreover, it points to

some crucial issues that have to be addressed when applying the model in a real world

context. Section 4 is devoted to the issue of training the network model. The discussion

starts by viewing the parameter estimation problem of the model as least squares (LS)

learning and continues with a description of the Alopex procedure, a global search

procedure, that provides an appropriate optimising scheme for LS-learning. It is

emphasised that the main goal of network training is to minimise the learning error

while ensuring good network model generalisation. The most common approach in

practice is to check the network performance periodically during training to assure that

further training improves generalisation as well as reduces learning error. Section 5
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presents the results of a benchmark comparison of the model against the standard origin

constrained gravity model and the two-stage neural network approach that treats the

prediction of flows and the imposing of accounting constraints as two independent

issues. The testbed for the evaluation uses interregional telecommunication traffic data

from Austria. Section 6 summarises the results achieved, and outlines some directions

for future research.

2 Background

2.1 Definitions and the Generic Interaction Model of the Gravity Type

Suppose we have a spatial system consisting of I origins and J destinations and let tij

denote the volume of interaction from spatial unit (region) i to j � �1, ..., ; 1, ...,i I j J� � .

This information may be displayed in the form of an interaction matrix of the following

kind

11 1 1

1

1

j J

i ij iJI J

I ij IJ

t t t

t t tT

t t t

�

� �
� �
� �
� ��
� �
� �
� �
� �

� �

� � �

� �

� � �

� �

(1)

In some cases the sets of origins and destinations are the same and, thus, I JT
�

 is a

squared matrix. The interpretation of the main diagonal of I IT
�

 depends on the specific

application. For instance, it might represent internal telecommunication flows within

region i � �1,...i I� . Often such values are not recorded. In other applications, for

example shopping trips from residential areas to individual shopping malls, the number

of origins and destinations may differ and I JT
�

 will not be square.

For all applications, the i-th row of the matrix I JT
�

 describes the outflows from region i

to each of the J destinations, while inflows from each of the I origins into destination j

are described by the j-th column. From I JT
�

 we can calculate the volume of interaction

originating from region i or terminating in region j, that is
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1,...,
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1,...,

I

j ij
i

t t j J
�

�

� �� (3)

respectively. In turn these marginal sums can be utilised to calculate the overall level of

interaction that is defined as

1 1

I J

ij
i j

t t
��

� �

��� (4)

The Generic Interaction Model of the Gravity Type

The distribution of interactions within such a system can be described by the generic

interaction model of the gravity type that asserts a multiplicative relationship between

the interaction frequency and the effects of origin, destination and separation attributes,

respectively. In general form it may be written as (see Wilson 1967, Alonso 1978)1

� � 1,..., ; 1,...,ij i j ijijb r s f i I j J� � � � (5)

where ij�  is the estimated flow from i to j. ir  is an origin factor characterising i

[=measure of origin propulsiveness], js  a destination factor characterising j [=measure

of destination attractiveness], and ijf  a separation factor that measures separation from

i to j. The separation factor ijf  is generally – but not necessarily – assumed to be a

function of some univariate measure ijd  of separation from i to j. The exact functional

form of each of these three variables is subject to varying degrees of conjecture (see

Fotheringham and O’Kelly 1989). � �ijb  is a balancing factor with varying subscripts

depending on which constraints � �ij�  has to obey concerning it �
, jt

�
 or t

��
. In the origin
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constrained case, for example, this conservation principle is enforced from the

viewpoint of origins only: � � � �/i i j iji j i
b t r s f

�
�

� �  guarantees that i ijj
t �
�
�� .

Alternative forms of the general gravity model (5) can be specified by imposing

different constraints on � �ij�  (see, for example Senior 1979, Fotheringham and O’Kelly

1989, Sen and Smith 1995). In the globally constrained case the only condition

specified is that the total estimated interaction �
��

 equals the total observed interaction

t
��

, in the origin constrained case the estimated outflows i� �
 from each i have to match

the observed outflows it �
 (origin constraint), in the destination constrained case the

estimated inflows j�
�

 to each region j must equal the observed inflows jt
�

(destination

constraint), and in the doubly constrained case the estimated inflows j�
�

 and outflows

i� �
 have to match their observed counterparts. Note that in the constrained case � � 1ijb � .

It is worth noting that in the origin-constrained [also called production constrained]

case the origin factor is linearly dependent with the origin specific balancing factor � �ib ,

and in the destination-constrained [also termed attraction-constrained] case the

destination factor with the destination-specific balancing factor � �jb , while in the

doubly-constrained case, the constant of proportionality � �ijb  depends on both origin and

destination. The origin constraint and the destination constraint are isomorph.

There are different approaches to estimating the generic spatial interaction model (5):

the maximum entropy approach developed by Wilson (1967) and the log-linear

approach which is a special case of Poisson regression (see, for example, Aufhauser

and Fischer 1985). These approaches yield identical estimates of the interaction flows

in the case where the interacting units are measured on the same level of aggregation,

and identical sets of independent variables are used to calibrate the model. 

2.2 The Classical Neural Network Approach to Spatial Interaction Modelling

The neural network approach to model spatial interactions departs from Equation (5) by

viewing spatial interaction models as a particular type of input-output model. Given an

input vector x, the network model produces an output vector �y , say � �=�y xg . The

function g is not explicitly known, but given by a finite set of samples, say
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� �� ,u uM x y�  with �1, ...,u U� , so that � �u ux y�g . The set M is the set of input and

output vectors. The task is to find a continuous function that approximates M. In real

world application, U is generally a small number and the samples contain noise.

The Generic Neural Spatial Interaction Model

In the unconstrained case the challenge is to approximate the real-valued interaction

function � � 3, , :i j ijr s f � ��g , where the 3-dimensional euclidian real space is the

input space and the 1-dimensional euclidian real space the output space. In practice

only bounded subsets of the spaces are considered. To approximate g, we consider the

class �  of feedforward neural network models with three input units, one hidden layer

that contains H hidden units and a single output unit. The three input units represent

measures of origin propulsiveness, destination attractiveness and spatial separation. The

output unit, denoted by �y , represents the estimated flow from i to j. Formally the

neural network model for the unconstrained case of spatial interaction may be written in

its general form as:

� �� �
3

3 3

0 0
; , , ; ,

H

h h hn n h hn
h n

x� � � � � � � �
� �

� �� �
� �� � � �� ��� �� �

	 
	 

� ��y x w x (6)

Vector � �0 1 2 3, , ,x x x x�x  is the input vector augmented with a bias signal 0x  that can

be thought of as being generated by a dummy unit whose output is clamped at 1.

Models belonging to � �,� x w  may have any number of hidden units � �1, 2, ...H �  with

connection strengths from hidden to the output unit represented by h� . The hn�

represent input-to-hidden connection weights. The symbol

� �� �| 1, ..., 5 1kw k K H� � � �w  is a convenient short hand notation of the � �5 1H � -

dimensional vector of all the hn� and h�  network weights and biases. h�  and �  are

arbitrarily differentiable, generally non-linear transfer functions of the hidden units and

the output unit, respectively.
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The Classical Unconstrained Neural Spatial Interaction Model

Hornik, Stinchcombe and White (1989) proved that single hidden layer feedforward

networks with �  being the identity function and h� ��  � �1, ...,h H�  an arbitrary

sigmoid transfer function2 can approximate any measurable function to any degree of

accuracy (in appropriate metrics), given sufficiently many hidden units. Thus, the

neural spatial interaction models suggested by Fischer, Hlavackova-Schindler and

Reismann (1999):

� �
13

0 0

, 1 exp
H

L h hn n
h n

x� � �

�

� �

� �� �
� � �� �� �� �� 	� 	
� �x w (7)

represent a rich and flexible family of spatial interaction function approximators.

Although it has become common place to view network models such as (7) as kinds of

black boxes, this leads to inappropriate applications which may fail not because such

network models do not work well but because the issues are not well understood.

Failures in applications can often be attributed to inadequate learning (training),

inadequate numbers of hidden units, or the presence of a stochastic rather than a

deterministic relation between input and target.

Least Squares Learning

If we view (7) as generating a family of approximators (as w ranges over W, say) to

some specific empirical spatial interaction phenomenon relating inputs x to some

response, y, then we need a way to pick the best approximation from this family. This is

the function of learning in the context of neural network modelling. The goodness of

the approximation can be evaluated using an error [penalty] function that measures how

well the model output �y  matches the target output y corresponding to given input x.

The penalty should be zero when target and model output match, and positive

otherwise. A leading case is the least square error function. With this error (penalty)

function, learning must arrive at *w  which solves

� �� �� � � �� �� � � � � �� �22 21 1 1
2 2 2min E , E E | E E | ,L L� �

�

� �� � � � �� �� �� 	� �w W
y x w y y x y x x w (8)
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where E denotes the expectation operator. Finding *w  is precisely the problem of

determining the parameters of an optimal least-squares approximator to � �E |y x , the

conditional expectation of y given x. The expectation defining the optimand is

unknown, so that this problem has to be solved statistically.

Backpropagation of Gradient Descent Errors

Backpropagation of gradient descent errors is such a method that allows parameters to

be learned from experience in a process which resembles trial and error (see Rumelhart,

Hinton and Williams 1986). Experience is based on empirical observations on the

phenomenon of spatial interaction of interest. Thus, we assume to have a training set

available consisting of observations ux  � �1, ...,u U�  on the input variables together

with observations uy  � �1, ...,u U�  on corresponding target variables, the network

model is to learn to associate with ux . According to the backpropagation of the gradient

descent errors procedure one starts with a set of random weights, say 0w , and then

updates them by the following formula for the n-th step:

� � � � � �� � � �� �� �1 1 11 , ,u u u
L Ln n x n y x n� � �� � �� � � 
 �w w w w (9)

where �  is a learning rate and L��  denotes the gradient of L�  with respect to w. The

weights are adjusted in response to errors in hitting the target where errors are measured

in terms of the least square error function. This error is propagated back. Although

many modifications of and alternatives to this parameter estimation approach have been

suggested in the neural network literature over the past years, experience shows that

surprisingly good network model performance can often be achieved with the epoch-

based stochastic version of this learning approach (see Fischer and Gopal 1994).

2.3 Departure from the Classical Neural Network Approach

Although classical neural spatial interaction models of type (7) represent a rich and

flexible family of spatial interaction function approximators for real world applications,
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they may be of little practical value in situations where the set of row totals or the set of

column totals of the spatial interaction matrix I JT
�

 is known a priori. For such

situations, the families of production constrained and attraction-constrained models of

the gravity type had been developed.

The question arises how to build neural network models for the case of singly

constrained spatial interactions. Following Openshaw (1998) constrained spatial

interaction modelling may be viewed as consisting of two parts:

� The prediction of flows, and

� the imposing of accounting constraints.

These two parts can be treated separately or simultaneously. The question that follows

is whether to embed the constraint-handling mechanism within the neural network

approach [one-stage modelling approach] or whether to estimate the unconstrained

neural spatial interaction model first and then to apply the accounting constraints

subsequently [two-stage modelling approach]. The one-stage modelling approach is

harder, requiring major changes to the model structure, while the two-stage approach is

much simpler [for an application see Mozolin, Thill and Usery (2000)].

3 The One-Stage Modelling Approach: The Modular Product Unit Network

Model

3.1 Why Product rather than Summation Unit Networks?

Classical neural spatial interaction models, such as � �,� x w  and � �,L� x w , are

constructed using a single hidden layer of summation units. In these networks each

input to the hidden node is multiplied by a weight and then summed. A non-linear

transfer function, such as the logistic function, is used to squash the sum. Neural

network approximation theory has shown the attractivity of such summation networks

for unconstrained spatial interaction contexts. But these networks require a larger

number of hidden summation units when approximating complex functions g , such as

those for mapping constrained interaction phenomena.
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In the neural network community it is well known that supplementing the inputs to a

neural network model with higher-order combinations of the inputs increases the

capacity of the network in an information capacity sense (see Cover 1965) and its

ability to learn (see Giles and Maxwell 1987). Although the error surface of product

unit networks contains more local minima than when using standard transfer functions,

the surface is locally smooth. But the price to be paid is a combinatorial explosion of

higher order terms as the number of inputs to the network increases. 

The product units introduced by Durbin and Rumelhart (1989) attempt to make use of

the above fact. Product unit networks have the advantage that – given an appropriate

training algorithm – the units can learn the higher order terms that are required to

approximate a specific constrained spatial interaction function. This motivates to utilise

the product unit rather than the standard summation unit neural framework for

modelling singly constrained interactions over space.

3.2 The Network Architecture

Product units compute the product of inputs, each raised to a variable power. They can

be used in a network in many ways, but the overhead required to raise an arbitrary base

to an arbitrary power makes it more likely that they will supplement rather than replace

summation units (Durbin and Rumelhart 1989).3 Thus, we use the term product unit

networks [or product networks] to refer to networks containing both product and

summation units.

Figure 1 illustrates the modular network architecture of the product unit neural network

that we propose to model the singly constrained case of spatial interactions. Modularity

is seen here as decomposition on the computational level. The network is composed of

two processing layers and two layers of network parameters. The first processing layer

is involved with the extraction of features from the input data. This layer is

implemented as a layer of J functionally independent modules with identical topologies.

Each module is a feedforward network with two inputs 2 1jx
�

 and 2 jx , H hidden product

units � � � �1 1, ..., 1 , ...,j H j H h jH� � � �� �� � , denoted by the symbol � , and terminates
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with a single summation unit, denoted by the symbol � . The collective outputs of these

modules constitute the input to the second processing layer consisting of J output units

that perform the flow prediction by applying some sort of the Bradley-Terry-Luce

model and enforcing satisfactorily the conservation rule of interaction from the

viewpoint of origins [destinations]4.

Figure 1: Architecture of the Product Unit Neural Spatial Interaction Model: The
Singly Constrained Case

The first layer of network parameters includes 2JH connection weights, so that

� � � � � � � �� �,2 1 ,21 1,2 1 1 ,2 1 1 1,2 1 ,2, ..., , ..., , , ..., , ...,1 j j j jH j j j j jH jj H j j H h j j H j j H h j= � � � � � �
�� � � � � � � � � �

w

(10)

while the second layer contains JH weights:

� � � �� �1 1 1, ..., , ...,2 j j j jHj H j H h= � � �
� � � �

w (11)

We have incorporated the basic trick of weight sharing into our network design to

reduce model complexity. Weight sharing involves forcing the set of connection

weights to be identical across the J modules. Thus, � �1 2,�w w w  is a (3H)-dimensional

...

•     •     •

... ...

...

j�
1,

 2j
-1

j�1 j�H

j�h
j�

H
, 2

j

j�H, 2j-1 j�1, 2j

j�h, 2j-1 j�h, 2j

... ...

J  Summation
Units

JH Hidden
Product
Units

2J Input
Units

... ...

Module 1 Module j Module J

Second Layer
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Parameters �h

First Layer
of Network
Parameters �hn

Bias

J Units

�ij

�j(.)

� � �

� � � � � � � � �

x1 x2 x2j-1 x2j x2J-1 x2J

1y� jy� Jy�

�iJ�i1

•     •     •

� �ijb�

The Output Layer

The Feature
Extraction Layer
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rather then a (3JH)-dimensional vector. Consequently, notation may be simplified as

follows for all 1, ...,j J� :

� �1 :j H h h� � � (12)

:jH H� (13)

� � ,2 11 ,2 1 :j h jj H h j� �
�� � �

� (14)

� � ,21 ,2 :j h jj H h j� �
� �

� (15)

� �1 :j hj H h� �
� �

� (16)

3.3 A Mathematical Description

The network architecture described above implements the general class of neural

models of singly constrained [SL] spatial interaction 

� �
2

1 2 1

, 1, ...,hn

jH

SL j h h nj
h n j

x j J�
� � � �

� � �

� �� �
� �� �� �� �

� �� �
� �x w (17)

with :h� ��� , :j� ���  and a � �2J –dimensional vector

� �1 2 2 1 2 2 1 2, , ..., , , ..., ,j j J Jx x x x x x
� �

�x (18)

where 2 1jx
�

 represents a variable js  pertaining to destination j � �1, ...,j J�  and 2 jx  a

variable ijf  pertaining to the separation from region i to region j � �1, ..., ; 1, ...,i I j J� �

of the spatial interaction system under scrutiny. hn�  � �1, ..., ; 2 1, 2h H n j j� � �  are the

input-to-hidden connection weights and h�  � �1, ...,h H�  the hidden-to-output weights

in the j-th module of the network model. The symbol w is a convenient shorthand

notation of the (3H)-dimensional vector of all the model parameters. j�  � �1, ...,j J�

represents a non-linear summation unit and h�  � �1,...,h H�  a linear hidden product

unit transfer function.
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We restrict our attention to some specific members of the above class. First, we assume

the hidden transfer function � �h� �  to be the identity function. Thus, the output of the

h-th hidden product unit of the j-th network module, denoted by j hz , reads as

� �
2

2 1

1, ..., ; 1, ...,hn

j

j h h j h n
n j

z net x j J h H�
�

� �

� � � �� (19)

Second, we assume that each output unit, � �, :SL jj
y� � �x w  � �1, ...,j J� , uses a non-

linear normalised transfer function � �j� � :

� � � � � �

1

, 1, ...,SL j ij Jj

j

net jnet j b j J
net j

� �

�

� � �

�

�x w

'

'
(20)

that resembles the Bradley-Terry-Luce model augmented by a bias unit � �ijb� . net j is the

value of the weighted sum for the j-th output node given by

2

1 2 1

1, ...,hn

jH

h n
h n j

net j x j J�
�

� � �

� �� � (21)

The choice of the output transfer function (20) is motivated by the goal to ensure that

the network outputs satisfy the conservation principle (Ledent 1985) that is enforced

from the viewpoint of origins if � � � �ij ib b�
� �  [origin constrained case] or from the

viewpoint of destinations if � � � �ij jb b�
� �  [destination constrained case]. SLΩ (x, w)j may be

interpreted as probability of spatial interactions, conditioned on the output 
1

H
j hh
z

�
�  of

the j-th network module.

With the two above specifications, our modular product unit neural network to model

origin constrained spatial interactions reads in a compact way as 

� � � �

2

1 2 11
2

1 1 2 1

, 1, ...,

hn

h n

jH

h n
h n j

SL i jJ Hj

h n
j h n j

x
b j J

x

�

�

�

�

�

� � �

� � � �

� �

� �

�� �

�x w
'

'

'
' ' '

(22)
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where � �ib�  is the bias signal that can be thought as being generated by a ’dummy unit’

whose output is clamped at the scalar 1/ it �
 The relation of (22) to the generic spatial

interaction model (5) becomes evident when setting 2 1j jx s
�

�  and 2 j ijx f� :

� � � �

1 2

1 2

1 1 1

1 1

: , 1, ...,

h h

h h

H

h j ij
h

ij SL i J Hj

h j ij
j h

s f
b j J

s f

� �

� �

�

� �

�

�

� �

� � �

�

��

�x w
' '

' ' '
' '

(23)

Analogously one arrives at the modular product unit neural network for the destination

constrained case:

� � � �

2

2 1 2 1
2

1 1 2 1

, 1, ...,

hn

h n

iH

h n
h n i

SL j iI Hi

h n
i h n i

x
b i I
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where � �jb�  is the bias signal that can be thought as being generated by a ’dummy unit’

whose output is clamped at the scalar 1/ jt
�

. Set 2 1i ix r
�

�  and 2 j ijx f�  then (24)

becomes
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3.4 Two Issues of Crucial Importance for Real-World Applications

Two major issues have to be addressed when applying the spatial interaction model

SL�  in a real world context: first, the issue of finding a suitable number H of hidden

product units [the so-called representation problem], and second, the issue of network

training or learning [the so-called learning problem]. The first issue is a challenging

task because the number of hidden product units affects the generalisation performance
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of the model. Small networks learn slowly or may not learn at all to an acceptable error

level. Larger networks usually learn better, but such sizes may lead to generalisation

degradation which is known as overtraining or overfitting. The correct number of

hidden units is problem dependent and a function of the complexity of the input-output

mapping to be realised by the model and the required accuracy. The common goal is to

simplify the model in terms of H without sacrificing its generalisation performance.

Various techniques have been developed in the neural network literature to control the

effective complexity of neural network models, in most cases as part of the network

training process itself. Since the maximum complexity of our model can be controlled

by limiting the number of hidden units, one obvious approach to the bias-variance

trade-off is to train several model candidates with different numbers of hidden product

units, and to select that model which gives the best generalisation performance. An

obvious drawback of such an approach is its trial and error nature. 

Another and more principled approach to the problem, that has been utilised by Fischer

and Gopal (1994), is the procedure of stopped or cross-validated training. Here, an

overparametrised model (larger H) is trained until the error on further independent data,

called validation set, deteriorates, then training is stopped. This contrasts to the above

approach since the choice of H does not require convergence of the training process.

The training process is used to perform a directed search of the parameter space for a

model that does not overfit the data and, thus, demonstrates generalisation performance.

But this approach has its shortcomings too. First it might be hard in practice to identify

when to stop training. Second, the results may depend on the specific training set-

validation set pair chosen. Third, the model which has the best performance on the

validation set might not be the one with the best performance on the test set. 

The second issue involves network training or learning [i.e. parameter estimation]. This

issue will be addressed in the next section in some more detail.
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4 Training the Modular Product Unit Network Model

4.1 The Optimisation Problem

Having identified the model structure for singly constrained spatial interaction

prediction in the previous section, we can now follow section 2.2 to view network

training in an optimisation context and proceed by considering the parameter estimation

problem as least squares learning. The goal of least squares learning is to find *w  so

that the least square error function, say Q, is minimized5:

� � � �� �
� �1 1

1

21 1 1 1 1

,

min , , min ,
u u

u u u u
SL

x y M

x y y x�

�

� ��w w
Q w w (26)

where 1M  denotes the training set available consisting of observations, say

� �1
11, ...,ux u U�  on the input variables together with observations, say

� �1
11, ...,uy u U� , on corresponding target variables, the network model is to learn to

associate with 1ux .

� �1 1, ,u ux yQ w  is non-negative, continuously differentiable on the (3H)-dimensional

parameter space which is a finite dimensional closed bounded domain and, thus,

compact. The compactness of the parameter space is of great theoretical convenience. It

can be shown that � �1 1, ,u ux yQ w  assumes its value *w  as the weight minimum under

certain conditions. But characteristically there exist many minima in real world

applications all of which satisfy 

� �1 1, , 0u ux y� �
*Q w (27)

where �Q  denotes the gradient of Q. The minimum for which the value of Q is

smallest is termed the global minimum while other minima are called local minima.

Unfortunately there is no guarantee about which kind of minimum is encountered.

The fraction of the parameter space that contains a solution depends on the capacity of

the network model [in an information theoretic sense] and the complexity of the
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problem at hand. Given the mountainous error surface that is characteristic for product

unit networks, a local search algorithm such as backpropagation of gradient descent

errors is ineffective and usually converges to local minima. In contrast, global search

algorithms such as, for example, the Alopex procedure have heuristic strategies to help

escape from local minima.

The success of global search procedures in finding a global minimum of a given

function such as � �1 1, ,u ux yQ w  over �w W  hinges on the balance between an

exploration process, a guidance process and a convergence inducing process (Hassoun

1995). The exploration process gives the search a mechanism for sampling a

sufficiently diverse set of parameters w in W. The Alopex6 procedure performs an

exploration process that is stochastic in nature. The guidance process is an implicit

process that evaluates the relative quality of search points [i.e., two consecutive search

points] and uses correlation guidance to move towards regions of higher-quality

solutions in the parameter space. Finally the convergence-inducing process ensures the

convergence of the search to find a fixed solution *w . The convergence-inducing

process is realised effectively by a parameter T, called temperature, that is gradually

decreased over time. The dynamic interaction among these three processes is

responsible for giving the Alopex search process its global optimising character.

4.2 The Alopex Procedure 

Consider a training data set � �1 1,u ux y  with 1 11, ..., .u U�  We assume that the data was

generated by some true underlying function � �xg . Our objective is to learn the

parameter � �| 1,...,3kw k H� �w  of the approximating function � �,SL� x w  whose form

is dependent upon the choice of H.

Alopex is a correlation-based method for solving the parameter estimation problem.

The error function Q is minimised by means of weight changes that are calculated for

the n-th step (n > 2) of the iteration process in batch mode as follows7:

� � � � � �� �1 sgnk k kw n w n p n� �� � � � (28)
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where � is the step size that has to be chosen a priori and �  an uniformly distributed

random value with � �0,1� � . The probability of change of the parameter is calculated

as

� � � � � �� �� �
1

1 exp /k kp n C n T n
�

� � (29)

with � �kC n  given by the correlation

� � � � � � � �� � � �� �1 2 , , 1 , , 2k k k k kC n w n w n w n w n� �� � � � � � �� �� � � �Q x y Q x y (30)

      � � � �� �, ,k kw n w n� �� � �� �� � � �Q x y

The weight will be incremented in a given fixed magnitude � , when 0kw� � , and the

opposite when it is less than zero. The sign of kC  indicates whether Q varies in the

same way as kw . If 0kC � , both Q and kw  will be raised or lowered. If 0kC � , one

will be lowered and the other one raised.

If T is too small, the algorithm gets trapped into local minima of Q. Thus, the value of T

for each iteration, T(n), is chosen using the following heuristic ’annealing schedule’:

� �
� �

� �

1

if is a multiple of
3

1 otherwise

n

k
k n n N

C n n N
HNT n

T n

�
�

� �

�
�

� �
� ��

� �
'

'
(31)

where 3H denotes the number of weights. The annealing schedule controls the

randomness of the algorithm. When T is small, the probability of changing the

parameters is around zero if kC  is negative and around one if kC  is positive. If T is

large, then 0.5kp � . This means that there is the same probability to increment or

decrement the weights and that the direction of the steps is now random. In other

words, high values of T imply a random walk, while low values cause a better

correlation guidance (see Bia 2000). The effectiveness of Alopex in locating global

minima and its speed of convergence critically depends on the balance of the size of the

feedback term kw� �Q  and the temperature T. If T is very large compared to kw� �Q
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the process does not converge. If T is too small, a premature convergence to a local

minimum might occur.

Initial Values

The algorithm has three parameters: the initial temperature T, the number of iterations,

N, over which the correlations are averaged for annealing, and the step size � . The

temperature T and the N-iterations cycles seem to be of secondary importance for the

final performance of the algorithm. The initial temperature T may be set to a large value

of about 1,000. This allows the algorithm to get an estimate of the average correlation

in the first N iterations and reset it to an appropriate value according to Equation (31). N

may be chosen between 10 and 100. In contrast to T and N, �  is a critical parameter

that has to be selected with care. There is no way to a priori identify � . 

The Termination Criterion

An important issue associated with network training is the termination criterion. The

main goal of training is to minimise the learning error while ensuring good model

generalisation. It has been observed that forceful training may not produce network

models with adequate generalisation ability, although the learning error achieved is

small. The most common remedy for this problem is to monitor model performance

during training to assure that further training improves generalisation as well as reduces

learning error. For this purpose an additional set of validation data, independent from

the training data is used. 

In a typical training phase, it is normal for the validation error to decrease. This trend

may not be permanent, however. At some point the validation error usually reverses or

its improvement is extremely slow. Then the training process should be stopped. In our

implementation of the Alopex procedure network training is stopped when 40,000� �

consecutive iterations are unsuccessful.

�  has been chosen so large at the expense of the greater training time, to ensure more

reliable estimates. Of course, setting the number of unsuccessful iterations to 40,000 (or

more) does not guarantee that there would be any successful steps ahead if training
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continued. At some stage a training algorithm may recover from some local attractor

and accomplish further error minimisation, but we require it should occur within a

certain number of iterations. Obviously, when training is stopped, the final set of

network weights does not correspond to the best result found. It is, thus, necessary to

store the parameter values in a separate array every time a successful training step is

made. At the end of the training process the best set of parameter values is then

recalled.

5 Benchmark Comparisons

The attraction of the approach suggested to model the case of singly constrained spatial

interaction depends not only on the awareness of what it can offer, but also on empirical

illustration of what can be gained in comparison to alternative model approaches. The

standard origin-constrained gravity model and the two-stage neural network approach,

suggested by Openshaw (1998) and implemented by Mozolin, Thill and Usery (2000),

are used as benchmark models. All three models were estimated by means of the

Alopex procedure to eliminate the effect of different estimation procedures on the

result. In order to do justice to each model, the � -parameter was systematically sought

for each model.

5.1 Performance Measures

The ultimate goal of any function approximator is its usefulness to generate  accurate

out-of-sample prediction. One way to directly assess the generalisation ability is to

measure how well the approximator predicts the flows for new input data which was

not used to fit the model. For this purpose some performance measure is required.

One needs to be very careful when selecting a measure to compare different models. A

comparison may become meaningless if the performance measure has been utilised to

estimate the parameters in the case of one model, but not in the others. There is some

literature that ignores this. In this study model performance is measured on the testing

[prediction, out-of-sample] data set, say � �� 3 3
3 ,u uM x y�  with �33 1,..,u U� , by means
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of two overall performance measures. The first performance measure are the average

relative variances, � �3ARV M , a normalised mean squared error metric that is widely

utilised in the neural network community:
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where � �3 3,u ux y  denotes the u3-th pattern of the testing set 3M , 3uy the average over

the 3 248U �  desired values. The averaging, that is the division by 3U  [the number of

patterns in 3M ], makes ARV independent of the size of 3M . The division by the

estimated 2
�  of the data removes the dependence on the dynamic range of the data.

This implies that if the estimated mean of the observed data would be taken as

predictor, ARV would equal to one (Weigend, Rumelhart and Hubermann 1991). The

statistic has a lower limit of zero indicating perfectly accurate predictions and an upper

limit that is in practice one.8 

The second performance measure is the standardised root mean square error (SRMSE)

that is widely utilised by spatial analysts (see Fotheringham and Knudsen 1987):

� � � �� �
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23 1 3
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u u
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� �
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� �

� w (33)

This statistic – closely related to the ARV-measure – has a lower limit of zero

indicating perfectly accurate predictions and an upper limit that is variable9 and

depends on the distribution of the 3uy .

5.2 The Data

The testbed for the benchmark comparisons uses interregional telecommunication

traffic data for Austria. From three Austrian data sources – a (32, 32)-interregional
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telecommunication flow matrix � �ijt , a (32, 32)-distance matrix � �ijd , and gross

regional products for the 32 telecommunication regions – a set of 992 3-tupel

� �, ,j ij ijs d t  with , 1,...,32i j �  � �i j�  was constructed. The first two components

represent the input variables 2 1jx
�

 and 2 jx  of the j-th module of the network model

� �1 ,SL� x w , and the last component the target output. The bias term � �ib�  is clamped to

the scalar 1/ it �
. js  represents the potential draw of telecommunication in j and is

measured in terms of the gross regional product, ijd  in terms of distances from i to j,

while ijt  and it �
 represent telecommunication traffic flows. The input data were

preprocessed to data scaled into [0.1, 0.9]10.

The telecommunication data used stem from network measurements of carried traffic in

Austria in 1991, in terms of erlang, an internationally widely used measure of

telecommunication contact intensity, which is defined as the number of phone calls

(including facsimile transfers) multiplied by the average length of the call (transfer)

divided by the duration of measurement11 [for more details, see Fischer and Gopal

1994]. The data refer to the telecommunication traffic between the 32

telecommunication districts representing the second level of the hierarchical structure

of the Austrian telecommunication network (see Figure 2). Due to measurement

problems, intraregional traffic (i.e. i = j) is left out of consideration.
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Figure 2: The Regional System for Modelling Interregional Telecommunciation
Traffic in Austria

One of the simplest methods for estimating the prediction error is data splitting. This

method simulates model validation with new data by partitioning the total data set of
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992 samples into three subsets12: the training [in-sample] set

� �� �1 1
1 1, with 1 1,..., 496 patternsu uM x y u U� � � , the internal validation set

� �� �2 2
2 2, with 2 1,..., 248 patternsu uM x y u U� � �  and the testing [prediction, out-of-

sample] set � �� �3 3
3 3, with 3 1,..., 248 patternsu uM x y u U� � � . 1M  is used only for

parameter estimation, while 2M  for validation. The generalisation performance of the

model is assessed on the testing set 3M .

Though the simplicity of this method is appealing, an obvious concern is the necessary

reduction in the amount of training data. In deciding how to partition the data, a

compromise has been made between creating a test set large enough to fully test the

fitted model while still retaining a sufficient amount of training and internal validation

data. If the test set is too small then the variance of the prediction error estimate will be

high due to the small sample size. Though random splits are commonly used and appear

to work reasonably well in the case of unconstrained spatial interaction, a more

systematic splitting method had to be used in the case of constrained spatial interaction.

Table 1: Descriptive Statistics: The Training, Validation and Testing Sets

Variables Mean Standard Minimum Maximum
Deviation

Whole Set M
sj 26,364,563 50,350,660 2,310,400 285,193,984
dij 229.4 124.6 30.0 630.0
tij 8.6 22.6 0.0 257.9
ti� 266.0 350.1 41.9 1830.1
Training Set M1

sj 26,142,923 49,711,907 2,310,400 285,193,984
dij 234.1 129.6 35.0 630.0
tij 9.6 26.2 0.0 257.9
ti� 297.0 429.1 41.9 1830.1
Validation Set M2

Sj 26,517,946 50,891,071 2,310,400 285,193,984
dij 219.3 121.4 30.0 590.0
tij 7.1 16.6 0.0 166.8
ti� 220.9 221.4 45.6 759.8
Testing Set M3

Sj 26,654,459 51,069,577 2,310,400 285,193,984
Dij 230.3 116.7 37.0 627.0
tij 8.0 19.7 0.0 195.2
ti� 249.0 262.5 55.3 895.7

Note: M consists of 992 patterns, M1 of 496 patterns, M2 of 248 patterns and M3 of 248
patterns.
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Some descriptive statistics characterising 1M , 2M  and 3M  are summarised in Table 1.

As can be seen from this table there are no large differences between the training,

validation and test sets. There are, nevertheless, differences, especially in ijt , which will

present some challenge to the estimation procedure used.

5.3 Model Estimation and the Overfitting Problem

Deciding on an appropriate number, H, of product units and on the value for the

Alopex-parameters �  (the step size) is somewhat discretionary, involving the familiar

trade-off between speed and accuracy. The approach adopted for this evaluation was

stopped (cross-validation) training. The Alopex-parameters T and N were set to 1,000

and 10, respectively.

It is worth emphasising that the training process is sensitive to its starting point. Despite

recent progress in finding the most appropriate parameter initialisation that would help

Alopex to find near optimal solutions, the most widely adopted approach still uses

random weight initialisation in order to reduce fluctuation in evaluation. Each

experiment employed to determine H and �  was repeated 60 times, the model being

initialised with a different set of random weights before each trial. Random numbers

were generated from [-0.3, 0.3] using the rand_uni function from Press et al. (1992).

The order of the input data presentation was kept constant for each run to eliminate its

effect on the result. The training process was stopped when 40,000� �  consecutive

iterations were unsuccessful.

Extensive computational experiments with different combinations of H- and � -values

have been performed on a DEC Alpha 375 Mhz. Table 2 summarises the results of the

most important ones. Training Performance is measured in terms of ARV(M1) and

validation performance in terms of ARV(M2). The performance values represent the

mean of the 60 simulations, standard deviations are given in brackets. Since all

simulations have similar computational complexity, iterations to converge to the

minimal ARV(M2)-value may be used as a measure of learning time. It is easy to see

that the combination of H = 16 and 0.0025� �  provides an appropriate choice for our

particular application.
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Table 2: The Modular Product Unit Neural Network: Choice of H and �  [T = 1,000;
N = 10] 

Parameter Iterations ARV(M1) ARV(M2)
H =   4

� = 0.0025 40.782 �19,886 0.2217 (0.0134) 0.1490 (0.0135)

H =   8
� = 0.0025 43,905 �18,854 0.2215 (0.0124) 0.1490 (0.0099)

H = 12
� = 0.0025 38,905 �17,896 0.2239 (0.0118) 0.1475 (0.0074)

H = 16
� = 0.0005 52,702 �33,311 0.2483 (0.0296) 0.1663 (0.0295)
� = 0.0010 59,321 �49,647 0.2368 (0.0244) 0.1585 (0.0263)
� = 0.0025 45,754 �21,284 0.2212 (0.0087) 0.1473 (0.0054)
� = 0.0050 22,948 �15,360 0.2216 (0.0107) 0.1512 (0.0090)
� = 0.0075 17,427 �12,918 0.2206 (0.0115) 0.1547 (0.0094)
� = 0.0100 13,545 �11,753 0.2241 (0.0151) 0.1593 (0.0131)

H = 24
� = 0.0025 40,580 �20,047 0.2230 (0.0097) 0.1481 (0.0053)

ARV-performance values represent the mean (standard deviations in brackets) of 60
simulations differing in the initial parameter values randomly chosen from [-0.3; 0.3].
Iterations: Number of iterations required to reach the parameter vector that provides

the best ARV(M2) performance.
ARV(M1): In-sample performance measured in terms of relative average variances.
ARV(M2): Out-of-sample performance measured in terms of relative average

variances.
M consists of 992 patterns, M1 of 496 patterns, M2 of 248 patterns and M3 of 248
patterns.

Figure 3 shows the learning curves of a typical run of the model (H = 16; measured by

Alopex with T = 1,000; N = 10; � =0.0025) of the model in terms of ARV( 1M ),

ARV( 2M ) and ARV( 3M ) respectively. The term learning curve is used to characterise

the performance as a function of iterations of the Alopex procedure. Figure 3(a) plots

the ARV-performance on the training set, Figure 3(b) the ARV-performance on the

validation set and Figure 3(c) the ARV-performance on the testing set. 

Typically, at the beginning of the training process, the validation error oscillates

rapidly. Later, around 5,000 iterations the training process stabilises and the changes in

the validation error become smaller. Instead of a clear increasing trend in the validation

error that characterises overfitting, it starts around 12,500 to wander around some

constant value. These undulations are caused by an increase of T in order to escape

from shallow, local minima of the error surface (see Figure 3(d)). Later, the training
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process stabilises and the changes in validation error become smaller. According to our

termination criterion, training is stopped after 18,841 iterations. At this stopping point,

P, the model is used for testing (prediction).

Figure 3: Training, Validation and Testing Set Curves as a Function of Training Time
(the vertical line P indicates the stopping point): The Modular Product Unit
Neural Network for Origin Constrained Spatial Interactions

5.4 The Benchmark Models 

The first benchmark model is the standard origin constrained gravity model, a special

case of the generic interaction model of the gravity type (see Equation (5))13:

� �
grav
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�
�

� (34)
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� �ib  is the origin specific balancing factor, � reflects the relationship of js  with grav
ij�

and �  is the distance sensitivity parameter, 0� � . js  is measured in terms of the gross

regional product in j, ijd  in terms of distances from i to j, while it �
 in terms of erlang.

We utilised the Alopex procedure for ML-estimation14 with T = 1,000; N = 10,

� =0.0075 and the termination criterion 40,000� �  iterations. 

The two-stage neural network modelling approach serves as second benchmark model.

In the first stage the classical unconstrained neural spatial interaction model, L�  (see

Equation (7)) is used. The input data were preprocessed to logarithmically transformed

data scaled to [0.1, 0.9]. The number of hidden summation units is 16. Least squares

learning and the Alopex procedure � �1,000; 10; 0.001, 40,000T N � �� � � �  were

used to determine the 81 model parameters. The parameters were randomly initialised

in the range of [-0.3, 0.3]. In the second stage the following constraint mechanism is

used to obtain origin constrained flows

� �
� �

� �

,
,

,
L ijconstr

L iij
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x w
x w
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(36)

5.5 Performance Tests and Results

Table 3 summarises the simulation results for the modular product unit network model
1

SL�  in comparison with the two-stage neural network approach constr
L�  and the origin

constrained gravity model grav
ij� . Out-of-sample performance is measured in terms of

ARV(M3) and SRMSE(M3). In addition, training performance values are displayed for

matters of completeness. The figures represent averages taken over 60 simulations

differing in the initial parameter values randomly chosen from [-0.3, 0.3]. Note that this

random initialisation puts 1
SL�  in contrast to constr

L�  at a slight disadvantage as its

optimal range is [-2, +2].
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If out-of-sample [generalisation] performance is more important than fast learning, then

the modular product unit neural network exhibits clear superiority. As can be seen by

comparing the ARV-values and the SRMSE-values the modular product unit neural

network model ranks best, followed by the two-stage neural network approach and the

gravity model. The average generalisation performance, measured in terms of

ARV( 3M ), is 0.2022 and, measured in terms of SRMSE( 3M ), 1.1017, compared to

0.2251 and 1.1614 in the case of the two-stage approach, and 0.2262 and 0.1658 in the

case of the gravity model15. This difference in performance between the modular

product unit neural network model and the benchmark models is statistically

significant16. If, however, the goal is to minimise execution time and a sacrifice in

generalisation accuracy is acceptable, then the standard origin constrained gravity

model is the method of choice. The gravity model outperforms the neural network

models in terms of execution time, the modular product unit network model by a factor

of 10 and the 2-stage neural network model by a factor of 102. But note that this is

mainly caused by two factors: first, that our implementations were done on a serial

platform even though the neural network models are parallelizeable, and, second, that

we implemented a rather time consuming termination criterion (� = 40,000) to stop the

training process.

Table 3: Benchmark comparisons of the Modular Product Unit Neural Network 1
SL�

with the Two-Stage Neural Network Approach constr
L�  and the Gravity

Model grav
ij� for Modelling Origin Constrained Spatial Interactions

Modular Product Unit
Neural Network

Two-Stage Neural
Network Approach

Origin Constrained
Gravity Model

In-Sample (Training)
Performance

ARV 0.2212 (0.0087) 0.2682 (0.0222) 0.2121 (0.0017)

SRMSE 1.2858 (0.0254) 1.4150 (0.0578) 1.2594 (0.0049)

Out-of-Sample (Testing)
Performance

ARV 0.2022 (0.0150) 0.2251 (0.0255) 0.2262 (0.0027)

SRMSE 1.1017 (0.0407) 1.1614 (0.0670) 1.1658 (0.0069)

Note: Figures represent averages taken over 60 simulations differing in the initial
parameter values randomly chosen from [-0.3, 0.3] (standard deviations in
brackets); the testing set consists of 248 patterns and the training set of 496 patterns.
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Residual Analysis

One means of further investigating the predictive power of the modular product unit

neural network model � �1 ,SL� x w  in comparison to the two benchmark models

� �. ,constr
L� x w  and grav

ij�  is the use of residual analysis. Figure 4 displays these in terms

of 

� the absolute residuals of the individual flows � �� �1 ,ij SL jt �� x w  compared to

� �� �,constr
ij L ijt �� x w  and � �grav

ij ijt �� , and

� the relative residuals of the individual flows � �� �1 , /ij SL ijj
t t�� x w  compared to

� �� �, /constr
ij L ijij

t t�� x w  and � � /grav
ij ij ijt t�� ,

where both absolute and relative residuals are ordered by the size of the observed

flows, ijt . The main conclusion from this analysis can be summarised as follows:

First, all three models show a tendency to underpredict larger flows. The neural

network models underpredict 17 out of 25 flows in the largest decile, compared to 16

gravity model underpredictions. The benchmark models tend to give results with a little

larger absolute deviation.

Second, all three models show a tendency to overpredict smaller flows. This is

evidenced in the smallest decile by 23 overpredictions in the smallest decile, obtained

by the modular product unit network, compared to 24 overpredictions of the benchmark

models.

Third, the modular product unit neural network model and the benchmark models show

a relatively similar pattern of residuals. Despite this similarity the modular model tends

to produce slightly more accurate predictions in the case of larger flows, but slightly

less accurate ones in the case of smaller flows.

In summary, the analysis unequivocally shows that the modular product unit network

outperforms the benchmark models in terms of both the ARV(M3) and SRMSE(M3)

prediction performance, as well as the prediction accuracy, but the latter to a lesser

degree than previously expected. One reason for this might be that the method of
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stopped training did not indicate unequivocally the stopping point, and thus, the

determination of H and � . This is an issue for further research.

Figure 4: Residuals of the Modular Product Unit Neural Network 1
SL� , the Two-

Stage Neural Network Approach constr
L�  and the Origin Constrained Gravity

Model Predictions grav
ij�
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(i1) Absolute Residuals � �� �x wij SLt Ω1- , ; ordered by the size of tij (i2) Relative Residuals � �� �x w1
ij SL ijt - Ω , /  t ; ordered by the size of tij

(ii1) Absolute Residuals � �� �x wconstr
ij Lt - Ω , ; ordered by the size of tij (ii2) Relative Residuals � �� �x wconstr

ij L ijt - Ω , /  t ; ordered by the size of tij

(iii1) Absolute Residuals � �� �� x wgrav
ij ijt - , ; ordered by the size of tij (iii2) Relative Residuals � �� �� x wgrav

ij ij ijt - , /  t ; ordered by the size of tij

(i) Residuals of the Modular Product Unit Neural Network Model � �x w1
SLΩ ,

(ii) Residuals of the Two-Stage Neural Network Model Approach � �x wconstr
LΩ ,

(iii) Residuals of the Origin Constrained Gravity Model � grav
ij
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6 Conclusions and Outlook

In this paper, a neural network methodology for modelling singly constrained spatial

interactions has been presented. The proposed function approximator is based on a

modular network design with functionally independent product unit network modules

where modularity refers to a decomposition on the computational level. Each module is

a feedforward network with two inputs and a hidden layer of 16 product units and

terminates with a single summation unit. The collective outputs of these modules

constitute the input to the layer of output units that perform the flow prediction by

applying some sort of the Bradley-Terry-Luce model. The paper also demonstrates a

simple way to implement the conservation rule from the viewpoint of origins

[destinations] that avoids the need to modify the parameter estimation procedure to

integrate the constraints on the predicted flows. 

The Alopex procedure provides an optimisation scheme that allows to produce LS-

estimates of the model parameters. The dynamic interaction among a stochastic

exploration process, the correlation based guidance to move towards regions of higher-

quality solutions in the parameter space and the convergence-inducing process is

responsible for the attractivity of the global search process of the procedure.

The attraction of this novel model approach depends not only on the awareness of what

it can offer, but also on empirical illustrations of what can be gained in terms of out-of-

sample (testing) approximation accuracy. Benchmark comparisons against the standard

origin constrained gravity model and the two-stage neural network approach, suggested

by Openshaw (1998) and implemented by Mozolin, Thill and Usery (2000), illustrate

the superiority of the product unit neural network model, measured in terms of both the

ARV- and the SRMSE-performance over 60 simulations.

The importance of avoiding overfitting cannot be overemphasised if a good predictive

model is desired, and consequently, we believe that testing further techniques to control

the model complexity without comprising network generalisation or learning accuracy

is merited. Our research may, furthermore, be extended in two other directions in

future, first, by modifying the approach to model the issue of origin and destination
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[that is, doubly] constrained interactions over geographic space and second, by

analysing the prediction quality of the function approximator in other spatial interaction

contexts.
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Endnotes

1 Alternative models based on additive adjustment formulations were introduced by Tobler (1983).
2 Sigmoid transfer functions are somewhat better behaved than many other functions with respect to the

smoothness of the error surface. They are well behaved outside of their local region in that they
saturate and are constant at zero or one outside the training region. Sigmoidal units are roughly linear
for small weights [net input near zero] and get increasingly non-linear in their response as they
approach their points of maximum curvature on either side of the midpoint.

3 In addition one property is being lost in comparison to summation units, namely that product units are
vulnerable to translation and rotation of the input space, in the sense that a learnable problem may no
longer be learnable after translation. Rotational and translational vulnerability of single product units
is in part compensated for, if a number of them are being used in parallel.

4 In the production constrained case the conservation principle is enforced from the viewpoint of origins
of spatial interactions, and in the attraction constrained case from the viewpoint of destinations only
(see Ledent 1985).

5 Bishop (1995) has shown that the least square error function can be derived from the principle of
maximum likelihood on the assumption of Gaussian distributed target data. Of course, the use of the
error function does not require the target data to have a Gaussian distribution.

6 Alopex is an acronym for algorithm for pattern extraction.
7 For the first two iterations, the weights are chosen randomly.
8 ARV-values greater than one arise whenever the average error is greater than the mean.
9 SRMSE-values greater the one arise whenever the average error is greater than the mean.

10 except for the standard origin constrained model
11 Flows are discrete counts, but note that flows are measured here in terms of erlang, a metric variable.
12 This static approach for evaluating the performance of a neural model has been used for many years in

the connectionist community in general and in neural spatial interaction modelling in particular (see
Fischer and Gopal 1994). Recent experience has found this approach to be rather sensitive to the
specific splitting of the data. Thus, usual tests of forecast reliability may appear over-optimistic in
general. Fischer and Reismann (2000) suggest an approach that combines the purity of splitting the
data into three disjoint sets with the power of bootstrapping to get a better statistical picture of forecast
variability, including the ability to estimate the effect of the randomness of the splits of the data.

13 There is virtual unanimity of opinion that site specific variables, such as sj in this case, are generally
best represented as power functions. The specification of fij is consistent with general consensus that
the power function is more appropriate for analyzing longer distance interactions (Fotheringham and
O’Kelly 1989).

14 Assuming that each tij has a Poisson distribution and the tij’s are independent leads to the following
objective function: � �,

ln grav grav
ij ij iji j

t � ���  that has to be maximized. This distributional assumption often
considered to be realistic is open to question in our context in view of the fact that the measurements
of flows are not discrete counts.

15 ARV-Out-of-sample variance of 1
SL�  varies between 0.1725 and 0.2361, that of constr

SL�  between 0.1852
and 0.2502 and that of grav

ij�  between 0.2225 and 0.2327.
16 assessed by means of the Mann-Whitney-U-Test (pairwise comparison of two independent samples).

The differences are statistically significant at the 1 % significance level. (U=280, Sig. 0.0 [compared
to the standard origin constrained gravity model] and U=144, Sig. 0.009 [compared to the two-stage
approach] ). 
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