1,007 research outputs found

    Questions on uncertainties in parton distributions

    Get PDF
    A discussion is presented of the manner in which uncertainties in parton distributions and related quantities are determined. One of the central problems is the criteria used to judge what variation of the parameters describing a set of partons is acceptable within the context of a global fit. Various ways of addressing this question are outlined

    Reporting of child maltreatment during the SARS-CoV-2 pandemic in New York City from March to May 2020

    Get PDF
    © 2020 Elsevier Ltd Background: School closures and other public health responses have decreased the extent that children interact with mandated reporters and other professionals trained to detect child maltreatment. Objective: To assess associations between the pandemic public health response and the number of allegations of child abuse or neglect. Methods: This study analyzed monthly data from New York City of the number of child maltreatment allegations, stratified by reporter type (e.g., mandated reporter, education personnel, healthcare personnel), as well as the number of Child Protective Services (CPS) investigations warranting child welfare preventative services. SARIMA models were trained using data from January 2015 to February 2020 to predict expected values for March, April, and May 2020. Observed values were compared against predicted values at an alpha of .05. Results: Substantially fewer allegations of child maltreatment were reported than expected in March (-28.8 %, deviation: 1848, 95 % CI: [1272, 2423]), April (-51.5 %, deviation: 2976, 95 % CI: [2382, 3570]), and May 2020 (-46.0 %, deviation: 2959, 95 % CI: [2347, 3571]). Significant decreases in child maltreatment reporting were also noted for all reporter subtypes examined for March, April, and May 2020. Fewer CPS investigations warranted preventative services than expected in March 2020 (-43.5 %, deviation: 303, 95 % CI: [132, 475]). Conclusions: Precipitous drops in child maltreatment reporting and child welfare interventions coincided with social distancing policies designed to mitigate COVID-19 transmission. In light of these findings, educators and healthcare providers must be especially vigilant when engaging online with children and their families for signs of child abuse and/or neglect

    Ontogeny of synaptophysin and synaptoporin in the central nervous system

    Get PDF
    The expression of the synaptic vesicle antigens synaptophysin (SY) and synaptoporin (SO) was studied in the rat striatum, which contains a nearly homogeneous population of GABAergic neurons. In situ hybridization revealed high levels of SY transcripts in the striatal anlage from embryonic day (E) 14 until birth. In contrast. SO hybridization signals were low, and no immunoreactive cell bodies were detected at these stages of development. At E 14, SY-immunoreactivity was restricted to perikarya. In later prenatal stages of development SY-immunoreactivity appeared in puncta (identified as terminals containing immunostained synaptic vesicles), fibers, thick fiber bundles and ‘patches’. In postnatal and adult animals, perikarya of striatal neurons exhibited immunoreaction for SO; ultrastructurally SO antigen was found in the Golgi apparatus and in multivesicular bodies. SO-positive boutons were rare in the striatum. In the neuropil, numerous presynaptic terminals positive for SY were observed. Our data indicate that the expression of synaptic vesicle proteins in GABAergic neurons of the striatum is developmentally regulated. Whereas SY is prevalent during embryonic development, SO is the major synaptic vesicle antigen expressed postnatally by striatal neurons which project to the globus pallidus and the substantia nigra. In contrast synapses of striatal afferents (predominantly from cortex, thalamus and substantia nigra) contain SY

    Machine learning for automatic prediction of the quality of electrophysiological recordings

    Get PDF
    The quality of electrophysiological recordings varies a lot due to technical and biological variability and neuroscientists inevitably have to select “good” recordings for further analyses. This procedure is time-consuming and prone to selection biases. Here, we investigate replacing human decisions by a machine learning approach. We define 16 features, such as spike height and width, select the most informative ones using a wrapper method and train a classifier to reproduce the judgement of one of our expert electrophysiologists. Generalisation performance is then assessed on unseen data, classified by the same or by another expert. We observe that the learning machine can be equally, if not more, consistent in its judgements as individual experts amongst each other. Best performance is achieved for a limited number of informative features; the optimal feature set being different from one data set to another. With 80–90% of correct judgements, the performance of the system is very promising within the data sets of each expert but judgments are less reliable when it is used across sets of recordings from different experts. We conclude that the proposed approach is relevant to the selection of electrophysiological recordings, provided parameters are adjusted to different types of experiments and to individual experimenters

    The Na(+)/Ca(2+) exchanger NCKX4 governs termination and adaptation of the mammalian olfactory response

    Get PDF
    Sensory perception requires accurate encoding of stimulus information by sensory receptor cells. We identified NCKX4, a potassium-dependent Na(+)/Ca(2+) exchanger, as being necessary for rapid response termination and proper adaptation of vertebrate olfactory sensory neurons (OSNs). Nckx4(-/-) (also known as Slc24a4) mouse OSNs displayed substantially prolonged responses and stronger adaptation. Single-cell electrophysiological analyses revealed that the majority of Na(+)-dependent Ca(2+) exchange in OSNs relevant to sensory transduction is a result of NCKX4 and that Nckx4(-/-) mouse OSNs are deficient in encoding action potentials on repeated stimulation. Olfactory-specific Nckx4(-/-) mice had lower body weights and a reduced ability to locate an odorous source. These results establish the role of NCKX4 in shaping olfactory responses and suggest that rapid response termination and proper adaptation of peripheral sensory receptor cells tune the sensory system for optimal perception

    Optimal Experimental Design for Biophysical Modelling in Multidimensional Diffusion MRI

    Get PDF
    Computational models of biophysical tissue properties have been widely used in diffusion MRI (dMRI) research to elucidate the link between microstructural properties and MR signal formation. For brain tissue, the research community has developed the so-called Standard Model (SM) that has been widely used. However, in clinically applicable acquisition protocols, the inverse problem that recovers the SM parameters from a set of MR diffusion measurements using pairs of short pulsed field gradients was shown to be ill-posed. Multidimensional dMRI was shown to solve this problem by combining linear and planar tensor encoding data. Given sufficient measurements, multiple choices of b-tensor sets provide enough information to estimate all SM parameters. However, in the presence of noise, some sets will provide better results. In this work, we develop a framework for optimal experimental design of multidimensional dMRI sequences applicable to the SM. This framework is based on maximising the determinant of the Fisher information matrix, which is averaged over the full SM parameter space. This averaging provides a fairly objective information metric tailored for the expected signal but that only depends on the acquisition configuration. The optimisation of this metric can be further restricted to any subclass of desirable design constraints like, for instance, hardware-specific constraints. In this work, we compute the optimal acquisitions over the set of all b-tensors with fixed eigenvectors

    Modelfree global tractography

    Get PDF
    © 2018 Elsevier Inc. Tractography based on diffusion-weighted MRI investigates the large scale arrangement of the neurite fibers in brain white matter. It is usually assumed that the signal is a convolution of a fiber specific response function (FRF) with a fiber orientation distribution (FOD). The FOD is the focus of tractography. While in the past the FRF was estimated beforehand and was usually assumed to be fix, more recent approaches estimate the response function during tractography. This work proposes a novel objective function independent of the FRF, just aiming for FOD reconstruction. The objective is integrated into global tractography showing promising results

    Spatial Distribution of Calcium-Gated Chloride Channels in Olfactory Cilia

    Get PDF
    Background: In vertebrate olfactory receptor neurons, sensory cilia transduce odor stimuli into changes in neuronal membrane potential. The voltage changes are primarily caused by the sequential openings of two types of channel: a cyclic-nucleotide-gated (CNG) cationic channel and a calcium-gated chloride channel. In frog, the cilia are 25 to 200 mm in length, so the spatial distributions of the channels may be an important determinant of odor sensitivity. Principal Findings: To determine the spatial distribution of the chloride channels, we recorded from single cilia as calcium was allowed to diffuse down the length of the cilium and activate the channels. A computational model of this experiment allowed an estimate of the spatial distribution of the chloride channels. On average, the channels were concentrated in a narrow band centered at a distance of 29 % of the ciliary length, measured from the base of the cilium. This matches the location of the CNG channels determined previously. This non-uniform distribution of transduction proteins is consistent with similar findings in other cilia. Conclusions: On average, the two types of olfactory transduction channel are concentrated in the same region of the cilium

    Influences of Excluded Volume of Molecules on Signaling Processes on Biomembrane

    Get PDF
    We investigate the influences of the excluded volume of molecules on biochemical reaction processes on 2-dimensional surfaces using a model of signal transduction processes on biomembranes. We perform simulations of the 2-dimensional cell-based model, which describes the reactions and diffusion of the receptors, signaling proteins, target proteins, and crowders on the cell membrane. The signaling proteins are activated by receptors, and these activated signaling proteins activate target proteins that bind autonomously from the cytoplasm to the membrane, and unbind from the membrane if activated. If the target proteins bind frequently, the volume fraction of molecules on the membrane becomes so large that the excluded volume of the molecules for the reaction and diffusion dynamics cannot be negligible. We find that such excluded volume effects of the molecules induce non-trivial variations of the signal flow, defined as the activation frequency of target proteins, as follows. With an increase in the binding rate of target proteins, the signal flow varies by i) monotonically increasing; ii) increasing then decreasing in a bell-shaped curve; or iii) increasing, decreasing, then increasing in an S-shaped curve. We further demonstrate that the excluded volume of molecules influences the hierarchical molecular distributions throughout the reaction processes. In particular, when the system exhibits a large signal flow, the signaling proteins tend to surround the receptors to form receptor-signaling protein clusters, and the target proteins tend to become distributed around such clusters. To explain these phenomena, we analyze the stochastic model of the local motions of molecules around the receptor.Comment: 31 pages, 10 figure
    corecore