445 research outputs found

    Metabolic diagnosis and medical prevention of calcium nephrolithiasis and its systemic manifestations: a consensus statement

    Get PDF
    Background: Recently published guidelines on the medical management of renal stone disease did not address relevant topics in the field of idiopathic calcium nephrolithiasis, which are important also for clinical research. Design: A steering committee identified 27 questions, which were proposed to a faculty of 44 experts in nephrolithiasis and allied fields. A systematic review of the literature was conducted and 5216 potentially relevant articles were selected; from these, 407 articles were deemed to provide useful scientific information. The Faculty, divided into working groups, analysed the relevant literature. Preliminary statements developed by each group were exhaustively discussed in plenary sessions and approved. Results: Statements were developed to inform clinicians on the identification of secondary forms of calcium nephrolithiasis and systemic complications; on the definition of idiopathic calcium nephrolithiasis; on the use of urinary tests of crystallization and of surgical observations during stone treatment in the management of these patients; on the identification of patients warranting preventive measures; on the role of fluid and nutritional measures and of drugs to prevent recurrent episodes of stones; and finally, on the cooperation between the urologist and nephrologist in the renal stone patients. Conclusions: This document has addressed idiopathic calcium nephrolithiasis from the perspective of a disease that can associate with systemic disorders, emphasizing the interplay needed between urologists and nephrologists. It is complementary to the American Urological Association and European Association of Urology guidelines. Future areas for research are identified

    Measurement of the double-differential inclusive jet cross section in proton-proton collisions at s\sqrt{s} = 5.02 TeV

    No full text
    International audienceThe inclusive jet cross section is measured as a function of jet transverse momentum pTp_\mathrm{T} and rapidity yy. The measurement is performed using proton-proton collision data at s\sqrt{s} = 5.02 TeV, recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 27.4 pb1^{-1}. The jets are reconstructed with the anti-kTk_\mathrm{T} algorithm using a distance parameter of RR = 0.4, within the rapidity interval y\lvert y\rvert<\lt 2, and across the kinematic range 0.06 <\ltpTp_\mathrm{T}<\lt 1 TeV. The jet cross section is unfolded from detector to particle level using the determined jet response and resolution. The results are compared to predictions of perturbative quantum chromodynamics, calculated at both next-to-leading order and next-to-next-to-leading order. The predictions are corrected for nonperturbative effects, and presented for a variety of parton distribution functions and choices of the renormalization/factorization scales and the strong coupling αS\alpha_\mathrm{S}

    Measurement of the double-differential inclusive jet cross section in proton-proton collisions at s= \sqrt{s} = 5.02 TeV

    No full text
    The inclusive jet cross section is measured as a function of jet transverse momentum pT p_{\mathrm{T}} and rapidity y y . The measurement is performed using proton-proton collision data at s= \sqrt{s} = 5.02 TeV, recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 27.4pb1\,\text{pb}^{-1}. The jets are reconstructed with the anti-kT k_{\mathrm{T}} algorithm using a distance parameter of R= R= 0.4, within the rapidity interval y< |y| < 2, and across the kinematic range 0.06 <pT< < p_{\mathrm{T}} < 1 TeV. The jet cross section is unfolded from detector to particle level using the determined jet response and resolution. The results are compared to predictions of perturbative quantum chromodynamics, calculated at both next-to-leading order and next-to-next-to-leading order. The predictions are corrected for nonperturbative effects, and presented for a variety of parton distribution functions and choices of the renormalization/factorization scales and the strong coupling αS \alpha_\mathrm{S} .The inclusive jet cross section is measured as a function of jet transverse momentum pTp_\mathrm{T} and rapidity yy. The measurement is performed using proton-proton collision data at s\sqrt{s} = 5.02 TeV, recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 27.4 pb1^{-1}. The jets are reconstructed with the anti-kTk_\mathrm{T} algorithm using a distance parameter of RR = 0.4, within the rapidity interval y\lvert y\rvert<\lt 2, and across the kinematic range 0.06 <\ltpTp_\mathrm{T}<\lt 1 TeV. The jet cross section is unfolded from detector to particle level using the determined jet response and resolution. The results are compared to predictions of perturbative quantum chromodynamics, calculated at both next-to-leading order and next-to-next-to-leading order. The predictions are corrected for nonperturbative effects, and presented for a variety of parton distribution functions and choices of the renormalization/factorization scales and the strong coupling αS\alpha_\mathrm{S}

    Measurement of the W boson mass

    No full text
    International audienceThe W boson mass is measured using proton-proton collision data at s \sqrt{s} = 13 TeV corresponding to an integrated luminosity of 1.7 fb1^{−1} recorded during 2016 by the LHCb experiment. With a simultaneous fit of the muon q/pT_{T} distribution of a sample of W → μν decays and the ϕ^{*} distribution of a sample of Z → μμ decays the W boson mass is determined to bemw=80354±23stat±10exp±17theory±9PDFMeV, {m}_w=80354\pm {23}_{\mathrm{stat}}\pm {10}_{\mathrm{exp}}\pm {17}_{\mathrm{theory}}\pm {9}_{\mathrm{PDF}}\mathrm{MeV}, where uncertainties correspond to contributions from statistical, experimental systematic, theoretical and parton distribution function sources. This is an average of results based on three recent global parton distribution function sets. The measurement agrees well with the prediction of the global electroweak fit and with previous measurements.[graphic not available: see fulltext

    Measurement of the double-differential inclusive jet cross section in proton-proton collisions at s\sqrt{s} = 5.02 TeV

    No full text
    International audienceThe inclusive jet cross section is measured as a function of jet transverse momentum pTp_\mathrm{T} and rapidity yy. The measurement is performed using proton-proton collision data at s\sqrt{s} = 5.02 TeV, recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 27.4 pb1^{-1}. The jets are reconstructed with the anti-kTk_\mathrm{T} algorithm using a distance parameter of RR = 0.4, within the rapidity interval y\lvert y\rvert<\lt 2, and across the kinematic range 0.06 <\ltpTp_\mathrm{T}<\lt 1 TeV. The jet cross section is unfolded from detector to particle level using the determined jet response and resolution. The results are compared to predictions of perturbative quantum chromodynamics, calculated at both next-to-leading order and next-to-next-to-leading order. The predictions are corrected for nonperturbative effects, and presented for a variety of parton distribution functions and choices of the renormalization/factorization scales and the strong coupling αS\alpha_\mathrm{S}

    Measurement of the double-differential inclusive jet cross section in proton-proton collisions at s\sqrt{s} = 5.02 TeV

    No full text
    International audienceThe inclusive jet cross section is measured as a function of jet transverse momentum pTp_\mathrm{T} and rapidity yy. The measurement is performed using proton-proton collision data at s\sqrt{s} = 5.02 TeV, recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 27.4 pb1^{-1}. The jets are reconstructed with the anti-kTk_\mathrm{T} algorithm using a distance parameter of RR = 0.4, within the rapidity interval y\lvert y\rvert<\lt 2, and across the kinematic range 0.06 <\ltpTp_\mathrm{T}<\lt 1 TeV. The jet cross section is unfolded from detector to particle level using the determined jet response and resolution. The results are compared to predictions of perturbative quantum chromodynamics, calculated at both next-to-leading order and next-to-next-to-leading order. The predictions are corrected for nonperturbative effects, and presented for a variety of parton distribution functions and choices of the renormalization/factorization scales and the strong coupling αS\alpha_\mathrm{S}

    Measurement of the double-differential inclusive jet cross section in proton-proton collisions at s\sqrt{s} = 5.02 TeV

    No full text
    International audienceThe inclusive jet cross section is measured as a function of jet transverse momentum pTp_\mathrm{T} and rapidity yy. The measurement is performed using proton-proton collision data at s\sqrt{s} = 5.02 TeV, recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 27.4 pb1^{-1}. The jets are reconstructed with the anti-kTk_\mathrm{T} algorithm using a distance parameter of RR = 0.4, within the rapidity interval y\lvert y\rvert<\lt 2, and across the kinematic range 0.06 <\ltpTp_\mathrm{T}<\lt 1 TeV. The jet cross section is unfolded from detector to particle level using the determined jet response and resolution. The results are compared to predictions of perturbative quantum chromodynamics, calculated at both next-to-leading order and next-to-next-to-leading order. The predictions are corrected for nonperturbative effects, and presented for a variety of parton distribution functions and choices of the renormalization/factorization scales and the strong coupling αS\alpha_\mathrm{S}

    Multiplicity and transverse momentum dependence of charge-balance functions in pPb and PbPb collisions at LHC energies

    No full text
    International audienceMeasurements of the charge-dependent two-particle angular correlation function in proton-lead (pPb) collisions at a nucleon-nucleon center-of-mass energy of sNN\sqrt{s_\mathrm{NN}} = 8.16 TeV and lead-lead (PbPb) collisions atsNN\sqrt{s_\mathrm{NN}} = 5.02 TeV are reported. The pPb and PbPb datasets correspond to integrated luminosities of 186\nbinv and 0.607 nb1^{-1}, respectively, and were collected using the CMS detector at the CERN LHC. The charge-dependent correlations are characterized by balance functions of same- and opposite-sign particle pairs. The balance functions, which contain information about the creation time of charged particle pairs and the development of collectivity, are studied as functions of relative pseudorapidity (Δη\Delta \eta) and relative azimuthal angle (Δϕ\Delta \phi), for various multiplicity and transverse momentum (pTp_\mathrm{T}) intervals. A multiplicity dependence of the balance function is observed in Δη\Delta \eta and Δϕ\Delta \phi for both systems. The width of the balance functions decreases towards high-multiplicity collisions in the momentum region <\lt2 GeV, for pPb and PbPb results. No multiplicity dependence is observed at higher transverse momentum. The data are compared with HYDJET, HIJING and AMPT generator predictions, none of which capture completely the multiplicity dependence seen in the data

    Measurement of multidifferential cross sections for dijet production in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceA measurement of the dijet production cross section is reported based on proton-proton collision data collected in 2016 at s\sqrt{s} = 13 TeV by the CMS experiment at the CERN LHC, corresponding to an integrated luminosity of up to 36.3 fb1^{-1}. Jets are reconstructed with the anti-kTk_\mathrm{T} algorithm for distance parameters of RR = 0.4 and 0.8. Cross sections are measured double-differentially (2D) as a function of the largest absolute rapidity ymax\lvert y_\text{max}\rvert of the two jets with the highest transverse momenta pTp_\mathrm{T} and their invariant mass m1,2m_{1,2}, and triple-differentially (3D) as a function of the rapidity separation yy^*, the total boost yby_\mathrm{b}, and either m1,2m_{1,2} or the average pTp_\mathrm{T} of the two jets. The cross sections are unfolded to correct for detector effects and are compared with fixed-order calculations derived at next-to-next-to-leading order in perturbative quantum chromodynamics. The impact of the measurements on the parton distribution functions and the strong coupling constant at the mass of the Z boson is investigated, yielding a value of αS\alpha_\mathrm{S} = 0.1179 ±\pm 0.0019

    Multiplicity and transverse momentum dependence of charge-balance functions in pPb and PbPb collisions at LHC energies

    No full text
    International audienceMeasurements of the charge-dependent two-particle angular correlation function in proton-lead (pPb) collisions at a nucleon-nucleon center-of-mass energy of sNN\sqrt{s_\mathrm{NN}} = 8.16 TeV and lead-lead (PbPb) collisions atsNN\sqrt{s_\mathrm{NN}} = 5.02 TeV are reported. The pPb and PbPb datasets correspond to integrated luminosities of 186\nbinv and 0.607 nb1^{-1}, respectively, and were collected using the CMS detector at the CERN LHC. The charge-dependent correlations are characterized by balance functions of same- and opposite-sign particle pairs. The balance functions, which contain information about the creation time of charged particle pairs and the development of collectivity, are studied as functions of relative pseudorapidity (Δη\Delta \eta) and relative azimuthal angle (Δϕ\Delta \phi), for various multiplicity and transverse momentum (pTp_\mathrm{T}) intervals. A multiplicity dependence of the balance function is observed in Δη\Delta \eta and Δϕ\Delta \phi for both systems. The width of the balance functions decreases towards high-multiplicity collisions in the momentum region <\lt2 GeV, for pPb and PbPb results. No multiplicity dependence is observed at higher transverse momentum. The data are compared with HYDJET, HIJING and AMPT generator predictions, none of which capture completely the multiplicity dependence seen in the data
    corecore