Multiplicity and transverse momentum dependence of charge-balance functions in pPb and PbPb collisions at LHC energies

Abstract

International audienceMeasurements of the charge-dependent two-particle angular correlation function in proton-lead (pPb) collisions at a nucleon-nucleon center-of-mass energy of sNN\sqrt{s_\mathrm{NN}} = 8.16 TeV and lead-lead (PbPb) collisions atsNN\sqrt{s_\mathrm{NN}} = 5.02 TeV are reported. The pPb and PbPb datasets correspond to integrated luminosities of 186\nbinv and 0.607 nb1^{-1}, respectively, and were collected using the CMS detector at the CERN LHC. The charge-dependent correlations are characterized by balance functions of same- and opposite-sign particle pairs. The balance functions, which contain information about the creation time of charged particle pairs and the development of collectivity, are studied as functions of relative pseudorapidity (Δη\Delta \eta) and relative azimuthal angle (Δϕ\Delta \phi), for various multiplicity and transverse momentum (pTp_\mathrm{T}) intervals. A multiplicity dependence of the balance function is observed in Δη\Delta \eta and Δϕ\Delta \phi for both systems. The width of the balance functions decreases towards high-multiplicity collisions in the momentum region <\lt2 GeV, for pPb and PbPb results. No multiplicity dependence is observed at higher transverse momentum. The data are compared with HYDJET, HIJING and AMPT generator predictions, none of which capture completely the multiplicity dependence seen in the data

    Similar works

    Full text

    thumbnail-image

    Available Versions