662 research outputs found

    Nutritional Assessment of Different Field Pea Genotypes (Pisum sativum L.)

    Get PDF
    The aim of this study was to determine the dry matter (DM), ash, organic matter (OM), crude protein (CP), ether extract (EE), crude fiber (CF), total sugars, starches and estimate the metabolizable energy (ME), in ruminants, pigs, poultry, horses and pets (dogs and cats) and digestible energy (DE) in rabbits from the 10 most productive field pea genotypes (Pisum sativum) obtained in a trial with 4 X 20 different genotypes (Project 0186_AGROCELE_3_E). The results (% DM - genotype) allowed us to state the following: all the 10 field pea genotypes grain were an important source of energy (cytoplasmic carbohydrates) with high percentages of soluble sugars (7.95% ISARD to 9.42% ENDURO) (P < 0.05) and starch (38.63% LIVIA to 45.00% AUDIT) (P < 0.05), low CF content (5.99% ISARD to 7.90% CARTOUCHE) (P < 0 05), high CP (22.8% ENDURO to 26.1% CORRENT) (P < 0.05), low levels of EE (0.69% LIVIA to 1.62% CHEROKEE) (P<0.05), ideal level of ME ruminants (11.844 MJ/kg DM - CHEROKEE to 11.883 MJ/kg DM - CORRENT) (P < 0.05), ME pigs (14.683 MJ/kg DM - ISARD to 13.885 MJ/kg DM - CARTOUCHE) (P < 0.05), ME poultry (11.540 MJ/kg DM - LIVIA to 12.868 MJ/kg DM - AUDIT) (P < 0.05), ME horse (11.392 MJ/kg DM - CORRENT to 11.979 MJ/kg DM - AUDIT) (P < 0.05), ME pets (13.116 MJ/kg DM – CORRENT to 13.498 MJ/kg DM - ISARD) (P < 0.05) and DE rabbits (12.977 MJ/kg DM – CARTOUCHE to 13.044 MJ/kg DM - ISARD) (P < 0.05). We concluded that all 10-field pea genotypes are an excellent feedstuff for ruminants and non-ruminants animal and it could be supplied plain or included in concentrate feed because it is an excellent protein and energy supplement. It combines in the same grain high levels of crude protein and starch. Due to the low fat content is a very interesting pulse for pets’ light diets.CERNAS - Supported by National Funds through FCT - Foundation for Science and Technology under the project PEst-OE/AGR/UI0681/201

    A volume-preserving sharpening approach for the propagation of sharp phase boundaries in multiphase lattice Boltzmann simulations

    Get PDF
    Lattice Boltzmann models that recover a macroscopic description of multiphase flow of immiscible liquids typically represent the boundaries between phases using a scalar function, the phase field, that varies smoothly over several grid points. Attempts to tune the model parameters to minimise the thicknesses of these interfaces typically lead to the interfaces becoming fixed to the underlying grid instead of advecting with the fluid velocity. This phenomenon, known as lattice pinning, is strikingly similar to that associated with the numerical simulation of conservation laws coupled to stiff algebraic source terms. We present a lattice Boltzmann formulation of the model problem proposed by LeVeque and Yee [J. Comput. Phys. 86, 187] to study the latter phenomenon in the context of computational combustion, and offer a volume-conserving extension in multiple space dimensions. Inspired by the random projection method of Bao and Jin [J. Comput. Phys. 163, 216] we further generalise this formulation by introducing a uniformly distributed quasi-random variable into the term responsible for the sharpening of phase boundaries. This method is mass conserving and the statistical average of this method is shown to significantly delay the onset of pinning

    Electronic polarization in pentacene crystals and thin films

    Full text link
    Electronic polarization is evaluated in pentacene crystals and in thin films on a metallic substrate using a self-consistent method for computing charge redistribution in non-overlapping molecules. The optical dielectric constant and its principal axes are reported for a neutral crystal. The polarization energies P+ and P- of a cation and anion at infinite separation are found for both molecules in the crystal's unit cell in the bulk, at the surface, and at the organic-metal interface of a film of N molecular layers. We find that a single pentacene layer with herring-bone packing provides a screening environment approaching the bulk. The polarization contribution to the transport gap P=(P+)+(P-), which is 2.01 eV in the bulk, decreases and increases by only ~ 10% at surfaces and interfaces, respectively. We also compute the polarization energy of charge-transfer (CT) states with fixed separation between anion and cation, and compare to electroabsorption data and to submolecular calculations. Electronic polarization of ~ 1 eV per charge has a major role for transport in organic molecular systems with limited overlap.Comment: 10 revtex pages, 6 PS figures embedde

    The Giant Anisotropic Magnetocaloric Effect In Dyal2

    Get PDF
    We report on calculations of the anisotropic magnetocaloric effect in DyAl2 using a model Hamiltonian including crystalline electrical field effects. The anisotropic effect is produced by the rotation of a constant magnetic field from the easy to a hard magnetic direction in the crystal and is enhanced by the first order nature of the field induced spin reorientation transition. The calculated results indicate that for a field with modulus of 2 T rotating from a hard to the easy direction, the isothermal magnetic entropy (Δ Siso) and adiabatic temperature (Δ Tad) changes present peak values higher than 60% the ones observed in the usual process, in which the field direction is kept constant and the modulus of the field is varied. © 2008 American Institute of Physics.1049Tishin, A.M., Spichkin, Y.I., (2003) The Magnetocaloric Effect and Its Applications, , 1st ed. (Institute of Physics, Bristol)Warburg, E., (1881) Ann. Phys. (N.Y.), 13, p. 141. , 0003-4916Brown, G.V., (1976) J. Appl. Phys., 47, p. 3673. , 0021-8979 10.1063/1.323176Pecharsky, V.K., Gschneidner Jr., K.A., (1997) Phys. Rev. Lett., 78, p. 4494. , 0031-9007 10.1103/PhysRevLett.78.4494Von Ranke, P.J., De Oliveira, N.A., Mello, C., Garcia, D.C., De Souza, V.A., Magnus, A., Carvalho, G., (2006) Phys. Rev. B, 74, p. 054425. , 0163-1829 10.1103/PhysRevB.74.054425Hill, T.W., Wallace, W.E., Craig, R.S., Inuone, T.J., (1973) Solid State Chem., 8, p. 364. , 10.1016/S0022-4596(73)80036-2De Oliveira, I.G., Garcia, D.C., Von Ranke, P.J., (2007) J. Appl. Phys., 102, p. 073907. , 0021-8979 10.1063/1.2783781Lima, A.L., Tsokol, A.O., Gschneidner Jr., K.A., Pecharky, V.K., Lograsso, T.A., Schlagel, D.L., (2005) Phys. Rev. B, 72, p. 024403. , 0163-1829 10.1103/PhysRevB.72.024403Von Ranke, P.J., De Oliveira, I.G., Guimarães, A.P., Da Silva, X.A., (2000) Phys. Rev. B, 61, p. 447. , 0163-1829 10.1103/PhysRevB.61.447Von Ranke, P.J., De Oliveira, N.A., Garcia, D.C., De Sousa, V.S.R., De Souza, V.A., Magnus, A., Carvalho, G., Reis, M.S., (2007) Phys. Rev. B, 75, p. 184420. , 0163-1829 10.1103/PhysRevB.75.184420Purwins, H.G., Leson, A., (1990) Adv. Phys., 39, p. 309. , 0001-8732 10.1080/00018739000101511Von Ranke, P.J., Pecharsky, V.K., Gschneidner Jr., K.A., (1998) Phys. Rev. B, 58, p. 1211

    A Comparative Study Of The Magnetocaloric Effect In Rni2 (r=nd,gd,tb) Intermetallic Compounds

    Get PDF
    Conventional and anisotropic magnetocaloric effects were studied in cubic rare earth RNi2 (R=Nd,Gd,Tb) ferromagnetic intermetallic compounds. These three compounds are representative of small, null, and large magnetocrystalline anisotropy in the series, respectively. Magnetic measurements were performed in polycrystalline samples in order to obtain the isothermal magnetocaloric data, which were confronted with theoretical results based on mean field calculations. For the R=Tb case, we explore the crystalline electrical-field anisotropy to predict the anisotropic magnetocaloric behavior due to the rotation of an applied magnetic field of constant intensity. Our results suggest the possibility of using both conventional and anisotropic magnetic entropy changes to extend the range of temperatures for use in the magnetocaloric effect. © 2009 American Institute of Physics.1051Pecharsky, V.K., Gschneidner Jr., K.A., (1997) Phys. Rev. Lett., 78, p. 4494. , 0031-9007 10.1103/PhysRevLett.78.4494Pecharsky, V.K., Gschneidner Jr., K.A., (1997) Appl. Phys. Lett., 70, p. 3299. , 0003-6951 10.1063/1.119206Von Ranke, P.J., De Oliveira, N.A., Mello, C., Garcia, D.C., De Souza, V.A., Carvalho, A.M.G., (2006) Phys. Rev. B, 74, p. 054425. , 0163-1829 10.1103/PhysRevB.74.054425De Oliveira, I.G., Garcia, D.C., Von Ranke, P.J., (2007) J. Appl. Phys., 102, p. 073907. , 0021-8979 10.1063/1.2783781Lima, A.L., Tsokol, A.O., Gschneidner Jr., K.A., Pecharsky, V.K., Lograsso, T.A., Schlagel, D.L., (2005) Phys. Rev. B, 72, p. 024403. , 0163-1829 10.1103/PhysRevB.72.024403Von Ranke, P.J., De Oliveira, N.A., Garcia, D.C., De Souza, V.S.R., De Souza, V.A., Carvalho, A.M.G., Gama, S., Reis, M.S., (2007) Phys. Rev. B, 75, p. 184420. , 0163-1829 10.1103/PhysRevB.75.184420Carvalho, A.M.G., Campoy, J.C.P., Coelho, A.A., Plaza, E.J.R., Gama, S., Von Ranke, P.J., (2005) J. Appl. Phys., 97, p. 083905. , 0021-8979 10.1063/1.1876575Plaza, E.J.R., De Sousa, V.S.R., Alho, B.P., Von Ranke, P.J., (unpublished)Von Ranke, P.J., De Oliveira, N.A., Plaza, E.J.R., De Souza, V.S.R., Alho, B., Carvalho, A.M.G., Gama, S., Reis, M.S., (2008) J. Appl. Phys., 104, p. 093906. , 0021-8979 10.1063/1.3009974Lindbaum, A., Gratz, E., Heathman, S., (2002) Phys. Rev. B, 65, p. 134114. , 0163-1829 10.1103/PhysRevB.65.134114Purwins, H.G., Leson, A., (1990) Adv. Phys., 39, p. 309. , 0001-8732 10.1080/00018739000101511Lea, K.R., Leask, M.J.M., Wolf, W.P., (1962) J. Phys. Chem. Solids, 23, p. 1381. , 0022-3697 10.1016/0022-3697(62)90192-0Stevens, K.W.H., (1952) Proc. Phys. Soc., London, Sect. A, 65, p. 209. , 0370-1298 10.1088/0370-1298/65/3/308Von Ranke, P.J., Pecharsky, V.K., Gschneidner Jr., K.A., (1998) Phys. Rev. B, 58, p. 12110. , 0163-1829 10.1103/PhysRevB.58.12110Von Ranke, P.J., Nóbrega, E.P., De Oliveira, I.G., Gomes, A.M., Sarthour, R.S., (2001) Phys. Rev. B, 63, p. 184406. , 0163-1829 10.1103/PhysRevB.63.18440

    The FMR1 CGG repeat mouse displays ubiquitin-positive intranuclear neuronal inclusions; implications for the cerebellar tremor/ataxia syndrome

    Get PDF
    Recent studies have reported that alleles in the premutation range in the FMR1 gene in males result in increased FMR1 mRNA levels and at the same time mildly reduced FMR1 protein levels. Some elderly males with premutations exhibit an unique neurodegenerative syndrome characterized by progressive intention tremor and ataxia. We describe neurohistological, biochemical and molecular studies of the brains of mice with an expanded CGG repeat and report elevated Fmr1 mRNA levels and intranuclear inclusions with ubiquitin, Hsp40 and the 20S catalytic core complex of the proteasome as constituents. An increase was observed of both the number and the size of the inclusions during the course of life, which correlates with the progressive character of the cerebellar tremor/ataxia syndrome in humans. The observations in expanded-repeat mice support a direct role of the Fmr1 gene, by either CGG expansion per se or by mRNA level, in the formation of the inclusions and suggest a correlation between the presence of intranuclear inclusions in distinct regions of the brain and the clinical features in symptomatic premutation carriers. This mouse model will facilitate the possibilities to perform studies at the molecular level from onset of symptoms until the final stage of the disease

    Magnetocaloric Effect Due To Spin Reorientation In The Crystalline Electrical Field: Theory Applied To Dy Al2

    Get PDF
    We report a way of obtaining the magnetocaloric effect due to the crystal electrical-field quenching of the total angular momentum in a magnetic system where a strong spin reorientation is present. The theoretical model is applied to Dy Al2 and the results predict a considerable magnetic entropy change by rotating a single crystal in a fixed magnetic field. The obtained temperature and magnetic-field dependencies of the magnetization component along the 111-crystallographic direction are in good agreement with the recently reported experimental data. © 2007 The American Physical Society.7518Pecharsky, V.K., Gschneidner Jr., K.A., (1997) Phys. Rev. Lett., 78, p. 4494. , PRLTAO 0031-9007 10.1103/PhysRevLett.78.4494Choe, W., Pecharsky, V.K., Pecharsky, A.O., Gschneidner Jr., K.A., Young Jr., V.G., Miller, G.J., (2000) Phys. Rev. Lett., 84, p. 4617. , PRLTAO 0031-9007 10.1103/PhysRevLett.84.4617Provenzano, V., Shapiro, A.J., Shull, R.D., (2004) Nature (London), 429, p. 853. , NATUAS 0028-0836 10.1038/nature02657Tegus, O., Brück, E., Buschow, K.H.J., De Boer, F.R., (2002) Nature (London), 415, p. 150. , NATUAS 0028-0836 10.1038/415150AWada, H., Tanabe, Y., (2001) Appl. Phys. Lett., 79, p. 3302. , APPLAB 0003-6951 10.1063/1.1419048Wada, H., Morikawa, T., Taniguchi, K., Shibata, T., Yamada, Y., Akishige, Y., (2003) Physica B, 328, p. 114. , PHYBE3 0921-4526 10.1016/S0921-4526(02)01822-7Hu, F., Shen, B., Sun, J., Cheng, Z., Rao, G., Zhang, X., (2001) Appl. Phys. Lett., 78, p. 3675. , APPLAB 0003-6951 10.1063/1.1375836Fujita, A., Fujieda, S., Hasegawa, Y., Fukamichi, K., (2003) Phys. Rev. B, 67, p. 104416. , PRBMDO 0163-1829 10.1103/PhysRevB.67.104416Von Ranke, P.J., De Oliveira, N.A., Gama, S., (2004) J. Magn. Magn. Mater., 277, p. 78. , JMMMDC 0304-8853 10.1016/j.jmmm.2003.10.013Von Ranke, P.J., De Campos, N.A., Caron, L., Coelho, A.A., Gama, S., De Oliveira, N.A., (2004) Phys. Rev. B, 70, p. 094410. , PRBMDO 0163-1829 10.1103/PhysRevB.70.094410Von Ranke, P.J., De Oliveira, N.A., Gama, S., (2004) Phys. Lett. a, 320, p. 302. , PYLAAG 0375-9601 10.1016/j.physleta.2003.10.067Gama, S., Coelho, A.A., De Campos, A., Carvalho, A.M., Gandra, F.C.G., Von Ranke, P.J., De Oliveira, N.A., (2004) Phys. Rev. Lett., 93, p. 237202. , PRLTAO 0031-9007 10.1103/PhysRevLett.93.237202Von Ranke, P.J., De Oliveira, N.A., Mello, C., Carvalho, A.M., Gama, S., (2005) Phys. Rev. B, 71, p. 054410. , PRBMDO 0163-1829 10.1103/PhysRevB.71.054410Von Ranke, P.J., Gama, S., Coelho, A.A., De Campos, A., Carvalho, A.M., Gandra, F.C.G., De Oliveira, N.A., (2006) Phys. Rev. B, 73, p. 014415. , PRBMDO 0163-1829 10.1103/PhysRevB.73.014415Von Ranke, P.J., Pecharsky, V.K., Gschneidner, K.A., Korte, B.J., (1998) Phys. Rev. B, 58, p. 14436. , PRBMDO 0163-1829 10.1103/PhysRevB.58.14436Von Ranke, P.J., Mota, M.A., Grangeia, D.F., Carvalho, A.M., Gandra, F.C.G., Coelho, A.A., Caldas, A., Gama, S., (2004) Phys. Rev. B, 70, p. 134428. , PRBMDO 0163-1829 10.1103/PhysRevB.70.134428Lima, A.L., Oliveira, I.S., Gomes, A.M., Von Ranke, P.J., (2002) Phys. Rev. B, 65, p. 172411. , PRBMDO 0163-1829 10.1103/PhysRevB.65.172411Von Ranke, P.J., Lima, A.L., Nobrega, E.P., Da Silva, X.A., Guimarães, A.P., Oliveira, I.S., (2000) Phys. Rev. B, 63, p. 024422. , PRBMDO 0163-1829 10.1103/PhysRevB.63.024422Lima, A.L., Tsokol, A.O., Gschneidner Jr., K.A., Pecharky, V.K., Lograsso, T.A., Schlagel, D.L., (2005) Phys. Rev. B, 72, p. 024403. , PRBMDO 0163-1829 10.1103/PhysRevB.72.024403Von Ranke, P.J., De Oliveira, I.G., Guimarães, A.P., Da Silva, X.A., (2000) Phys. Rev. B, 61, p. 447. , PRBMDO 0163-1829 10.1103/PhysRevB.61.447Bak, P., (1974) J. Phys. C, 7, p. 4097. , JPSOAW 0022-3719 10.1088/0022-3719/7/22/014Hutchings., M.T., (1964) Solid State Phys., 16, p. 227. , SSPHAE 0081-1947Lea, K.R., Leask, M.J.M., Wolf, W.P., (1962) J. Phys. Chem. Solids, 33, p. 1381. , JPCSAW 0022-3697Stevens, K.W.H., (1952) Proc. Phys. Soc., London, Sect. a, 65, p. 209. , PPSAAM 0370-1298 10.1088/0370-1298/65/3/308Purwins, H.G., Leson, A., (1990) Adv. Phys., 39, p. 309. , ADPHAH 0001-8732 10.1080/00018739000101511Kuz'Min, M.D., Tishin, A.M., (1991) J. Phys. D, 24, p. 2039. , JPAPBE 0022-3727 10.1088/0022-3727/24/11/02
    • …
    corecore