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A B S T R A C T

Parkinson's disease (PD) is a neurodegenerative condition in which aberrant oscillatory synchronization of
neuronal activity at beta frequencies (15–35 Hz) across the cortico-basal ganglia-thalamocortical circuit is asso-
ciated with debilitating motor symptoms, such as bradykinesia and rigidity. Mounting evidence suggests that the
magnitude of beta synchrony in the parkinsonian state fluctuates over time, but the mechanisms by which tha-
lamocortical circuitry regulates the dynamic properties of cortical beta in PD are poorly understood. Using the
recently developed generic Dynamic Causal Modelling (DCM) framework, we recursively optimized a set of
plausible models of the thalamocortical circuit (n¼ 144) to infer the neural mechanisms that best explain the
transitions between low and high beta power states observed in recordings of field potentials made in the motor
cortex of anesthetized Parkinsonian rats. Bayesian model comparison suggests that upregulation of cortical
rhythmic activity in the beta-frequency band results from changes in the coupling strength both between and
within the thalamus and motor cortex. Specifically, our model indicates that high levels of cortical beta synchrony
are mainly achieved by a delayed (extrinsic) input from thalamic relay cells to deep pyramidal cells and a fast
(intrinsic) input from middle pyramidal cells to superficial pyramidal cells. From a clinical perspective, our study
provides insights into potential therapeutic strategies that could be utilized to modulate the network mechanisms
responsible for the enhancement of cortical beta in PD. Specifically, we speculate that cortical stimulation aimed
to reduce the enhanced excitatory inputs to either the superficial or deep pyramidal cells could be a potential non-
invasive therapeutic strategy for PD.
1. Introduction

Neuronal oscillations are considered to be key elements of informa-
tion flow (Buzsaki and Draguhn, 2004; Salinas and Sejnowski, 2001). For
neural populations to communicate in a behaviour-specific and adaptive
fashion, they may adapt their degree of rhythmic synchronization
accordingly (Fries, 2005). In its normative physiological state, the
Cortico-Basal Ganglia-Thalamo-Cortical circuit (CBGTC) exhibits tran-
sient (de-)synchronization in the beta band (13–30Hz) activity during
motor control (Cassidy et al., 2002; Foffani et al., 2005; Pfurtscheller and
Lopes da Silva, 1999; Tsang et al., 2012; Zaepffel et al., 2013).

Increased oscillations in the beta band have been observed both in
amics Unit, University of Oxford
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Parkinson's disease (PD) patients (Brown et al., 2001) and experimental
animal models of the disease (Bergman et al., 1994; Sharott et al., 2005).
However, it remains unknown why dopamine depletion leads to exces-
sive synchronization across the CBGTC circuit during PD (Jenkinson and
Brown, 2011; Hammond et al., 2007, Leblois, 2006). The onset of
measurable oscillations in experimental Parkinsonism takes several days
post dopaminergic cell loss (Mallet et al., 2008a). One potential expla-
nation for this observation is that the reduction in dopaminergic drive
may lead to plastic changes and give rise to abnormal synchronization in
neural activity within and between different nodes of the CBGTC circuit.
Regardless of the exact mechanism, a positive correlation between
excessive beta activity and motor deficits has been reported by several
, Oxford, UK.
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clinical studies (Eusebio et al., 2009; Kuhn et al., 2008).
When Parkinsonian motor deficits are attenuated with pharmaco-

logical (Levodopa) or neuromodulatory interventions (deep brain stim-
ulation or optogenetics), a reduction in synchronization is observed in
the beta-frequency band across different species, including humans
(Brown et al., 2001; Eusebio et al., 2009; Kuhn et al., 2008; Levy et al.,
2002; Priori et al., 2004; Silberstein et al., 2005), 1-methyl-4-phenyl-1,2,
3,6-tetrahydropyridine treated non-human primate models of PD
(Heimer et al., 2006; Nambu and Tachibana, 2014) and a 6-hydroxydop-
amine (6-OHDA)-lesioned rat model of PD (Gradinaru et al., 2009;
Sharott et al., 2005).

Although excessive synchrony in the beta band (i.e. beta power) is
traditionally described as a sustained event when averaged over seconds
(Brittain and Brown, 2014; Brown, 2007; Lopez-Azcarate et al., 2010), it
primarily manifests as intermittent events of high beta power or “beta
bursts” (Feingold et al., 2015; Sherman et al., 2016; Tinkhauser et al.,
2017; Little et al., 2012; Leventhal et al., 2012). Beta bursts have been
defined operationally as epochs of beta oscillations that surpass a certain
threshold – and their presence has been quantified in physiological
(Sherman et al., 2016; Feingold et al., 2015) and pathological neural
activity (Tinkhauser et al., 2017; Little et al., 2012). More specifically, in
Parkinson's disease, the probability of long beta bursts has been posi-
tively correlated with PD motor symptom severity (Tinkhauser et al.,
2017; Little et al., 2012).

Adaptive Deep Brain Stimulation (aDBS) is an intervention that has
been developed to account for the transient nature of pathological neural
synchrony in the beta band. In contrast to conventional DBS (cDBS),
which continuously delivers high-frequency stimulation, aDBS adapts
stimulation delivery according to the level of beta power (Little et al.,
2013, 2012; Rosa et al., 2015), showing greater clinical efficiency (higher
motor symptom relief and fewer secondary effects) than cDBS and
random stimulation (Little et al., 2013).

From a neuronal network perspective, several studies have proposed
that altered basal-ganglia output leads to excessive beta synchrony and
motor impairments in PD (Bevan et al., 2002; Holgado et al., 2010;
McCarthy et al., 2011; Terman et al., 2002). Employing Dynamic Causal
Modelling (DCM) (Friston et al., 2003), a framework for specifying,
fitting and comparing mathematical models of neural circuitry, Moran
et al. (2011) and Marreiros et al. (2013) indicated modulation of the
hyperdirect pathway and the projection from the subthalamic nucleus
and globus pallidus externus as potential mechanisms for beta power
enhancement in dopamine-depleted states.

Some experimental studies, on the other hand, support the role of
cerebral cortex in the generation and modulation of beta oscillations
(Jensen et al., 2005; Yamawaki et al., 2008). This perspective has
motivated the consideration of cortical interlaminar interactions in the
regulation of beta power. In the healthy state, the generation and mod-
ulation of beta oscillations has been investigated using DCM (Bhatt et al.,
2016), revealing a link between a set of laminar specific interactions
within the primary motor cortex and the enhancement/suppression of
beta power evoked by movement. Using a theoretical model, Sherman
et al. (2016) suggested that high beta power events in the physiological
state emerge through cortical laminar interactions conditioned by tem-
poral characteristics of the distal and proximal synaptic drives in the
neocortex.

Motivated by these studies, we hypothesized that – in the Parkinso-
nian state – an alteration of interlaminar and laminar-specific connec-
tivity in the Thalamocortical (TC) loop contributes to the mechanisms
generating the parkinsonian spectral profile. We focused on the TC loop
due to the anatomical and functional characteristics of this network: 1)
the cortex is an optimal target for non-invasive therapeutic techniques
such as TMS and TACS (Barker et al., 1985; Cantello, 2002; Kobayashi
and Pascual-Leone, 2003; Herrmann et al., 2013); 2) the thalamus is the
only CBGTC node projecting directly to cortex, allowing for the inte-
gration of information from subcortical structures to the motor cortex
(Wise and Donoghue, 1986; Brazhnik et al., 2016) and 3) cortex and
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thalamus establish a reciprocal relationship (Hooks et al., 2013), which is
thought to play a key role in physiological and pathological sensory and
motor computations (Sherman & Guillery, 2001). In PD, where motor
impairments are the cardinal symptoms, understanding the synaptic
dynamics and organization of the thalamocortical (TC) circuit could
potentially shed light on pathophysiological mechanisms. Accordingly,
we used cross spectral density (CSD) - DCM (Moran et al., 2009, 2011)
with a neural mass model of the TC loop (van Wijk et al., 2018) to
characterize its contribution to spontaneous beta power fluctuations
observed in the motor cortex of 6-OHDA-lesioned Parkinsonian rats.

2. Methods

2.1. Electrophysiological recordings in parkinsonian rats

The spectral data used in this study was based on motor cortex field
potentials (electrocorticograms) recorded in 36 urethane-anesthetized
rats rendered Parkinsonian by unilateral 6-OHDA lesions of midbrain
dopaminergic neurons. To record electrocorticogram (ECoG) data, a steel
screw electrode was implanted over the right somatosensory-motor
cortex ipsilateral to the 6-OHDA lesion and referenced to a steel screw
electrode implanted over the ipsilateral cerebellar hemisphere. Electro-
physiological recordings were carried out 21–42 days after surgery for
the induction of 6-OHDA lesions, thus allowing for changes in the CBGTC
circuit to stabilize. For detailed descriptions of electrode implantation,
anaesthesia, surgical induction of 6-OHDA lesions and related proced-
ures, please refer to (Mallet et al., 2008a, 2008b; Sharott et al., 2017).
Only ECoG recordings made during periods of spontaneous ‘cortical
activation’ were considered in this study (Mallet et al., 2008a, 2008b;
Sharott et al., 2017). All experimental procedures were carried out on
adult male Sprague-Dawley rats (Charles River, Margate, UK) and were
conducted in accordance with the Animals (Scientific Procedures) Act,
1986 (UK).

2.2. Data processing

All operations described in this section were performed in Matlab
2017a/2018a. Data and code that support the findings of this study are
available from the corresponding author (HC; hayriye.cagnan@ndcn
.ox.ac.uk) upon request. Recordings were down-sampled to 1000 Hz
from 16,000Hz. To characterize the spontaneous beta power fluctuations
typically observed in PD, we defined two conditions based on instanta-
neous beta power – condition one being Low Beta (LB) power and con-
dition two being High Beta (HB) power. These conditions were based on
fluctuations in beta power that enabled us to select data-features (i.e.,
timeseries) for subsequent dynamic causal modelling that were repre-
sentative of the two conditions.

To extract the beta power envelope, we applied a second order band-
pass Butterworth filter with cut-off frequencies at 15–35Hz to the ECoG
recording and subsequently employed the Hilbert transform to compute
the envelope of the ECoG in the beta frequency band. Each envelope was
then divided into non-overlapping epochs of 500msec The two condi-
tions were subsequently derived from a relative threshold applied to the
area under the envelope across the 500msec epochs: (1) LB epochs
consisted of segments whose envelope area fell below the 5th percentile
of the envelope area observed across all epochs, and (2) HB epochs
consisted of segments whose envelope area was above the 95th percen-
tile of the envelope area observed across all epochs (Fig. 1). 5th and 95th
percentile thresholds were determined per dataset. From each recording,
we randomly selected 5 epochs per condition (n¼ 5). This number cor-
responds to the minimum number of epochs found in either of the two
conditions across all recordings. A detailed comparison between the
above threshold and more conventional ones can be found in the Sup-
plementary material (Fig. S1).
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Fig. 1. Extraction of low beta and high beta power features isolated from ECoG data. Panel A. shows the segmentation of the envelope into 500 msec epochs (5 s as an
example). Panel B. depicts the area under the beta band envelope for each epoch. If an epoch had an area under the curve below the 5th percentile of the area under
the envelope observed across all epochs (blue line), it was classified as low beta (*1); if an epoch had an area under the curve above the 95th percentile of the area
observed under the envelope across all epochs (red line), it was classified as high beta (*2). 5th and 95th percentile thresholds were determined per dataset. Epochs in
between the two percentiles were not considered. Panel C. shows the corresponding low beta (dark blue) and high beta (red) epochs in the ECoG signal filtered
at 15–35 Hz.
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2.3. Dynamic causal modelling (DCM)

DCM for cross spectral density is used to infer the hidden (neuronal)
states (z) and synaptic parameters (θ) that generate spectral features of
observed data (u) (Moran et al., 2009, 2011). Hidden states and unknown
parameters cannot be observed directly but can be estimated under a
generative or forward model. This model comprises a biophysical neural
mass model and the spectral composition of neural and channel noise
(Moran et al., 2008). The neural mass model is expressed in terms of a
differential equation with the following form:

_z ¼ f ðz; u; θÞ (1)

The neural mass model (f ) – together with a likelihood model map-
ping hidden states to observed measurements – constitutes a generative
model; namely, a probabilistic mapping between neural fluctuations and
the spectral content of observed activity. Using a Bayesian framework,
DCM estimates the (posterior) probability density over the synaptic pa-
rameters, which are the most likely value of the hidden parameters, given
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the observed data (Moran et al., 2011). The generative (neural mass)
model calls on its biophysical parameters to describe the evolution of
voltages (v) and currents ðiÞ in each subpopulation of neurons (Jansen
and Rit, 1995). In addition to estimating the posterior density over model
parameters (e.g., synaptic connection strengths and the amplitude of
neuronal fluctuations), DCM also provides an estimate of the evidence for
a particular model or network architecture implicit in the generative
model. This allows one to compare different models or hypotheses using
Bayesian model comparison. A complete description of the mathematical
framework that underwrites DCM can be found in (Moran et al., 2013).

2.3.1. Neural mass model of the thalamocortical circuit
A neural mass model of the Thalamocortical circuit was created

comprising two formally distinct neural mass models of the motor cortex
and the thalamus using the new generic framework for Dynamic Causal
Modelling (van Wijk et al., 2018) (Fig. 2). Here, we adopted the motor
cortex microcircuit (MMC) model developed by Bhatt et al. (2016) and
coupled it to a model of the thalamus, based on thalamic anatomical
literature (Shepherd and Grillner, 2010; Douglas and Martin, 2004). As
Fig. 2. Sources, subpopulations and synaptic
projections of a thalamocortical loop neural mass
model. The top part of the diagram describes the
first source - motor cortex and its subpopulations:
superficial pyramidal cells (SP) in the supra-
granular layer, middle pyramidal cells (MP) in the
granular layer, deep pyramidal cells (DP) in the
infragranular layer and, inhibitory interneurons
(II) as a common inhibitory subpopulation to the
3 cortical laminae. Intrinsic synaptic connections
among the above subpopulations comprise a
reciprocal connection between superficial and
middle pyramidal cells, a reciprocal connection
between superficial and deep pyramidal cells, a
reciprocal connection between each of the three
pyramidal subpopulations and the inhibitory
subpopulation and finally, a self-inhibitory
connection to each cortical node. The bottom
part of the diagram depicts the thalamus and its
subpopulations: reticular thalamic cells (RET) as
the inhibitory subpopulation of the thalamus and
relay cells (REL) as the excitatory subpopulation
of the motor thalamus. Intrinsic synaptic connec-
tivity of the thalamus comprises a reciprocal
connection between relay and reticular cells and
self-inhibitory connection of reticular cells. As
corticothalamic extrinsic connections, deep pyra-
midal cells were considered to send afferents to
both relay and reticular subpopulations, while the
model space for thalamocortical projections is
described in section 2.3.4 and illustrated in Fig. 3
(top panel).



Table 1
Prior expectations set for the parameters of the baseline condition (Low beta).
CT-corticothalamic projections; TC-thalamocortical projections; MMC – motor
microcircuit; THAL-thalamus; SP- superficial pyramidal cells; MP- middle pyra-
midal cells; DP – deep pyramidal cells.

Parameters Description Prior means
(μ)

Log-scaling
parameters
(π;σ2)

γmmc
1…14 Synaptic coupling

strengths motor cortex
[Hz]

[800 800 800 800 800
400 800 800 400 200
400 800 800 400]

0, 1/16

Tmmc
1…4 Time constant [msec] of

cell populations motor
cortex: [MP, SP, II, DP]

[8 8 8 8] 0, 1/16

γtcr1…3 Synaptic coupling
strengths motor
thalamus [Hz]

[800 800 800] 0, 1/64

Ttcr
1…2 Time constants [msec]

cell populations
thalamus: [RET; REL]

[8 8] 0, 1/64

λ 1…4 Extrinsic connections
strengths: [CT and TC]
[Hz]

[800 800 800 800] 0, 1/16

B1…8 Condition-specific
effects (on coupling
strengths):

[0] 0, 1/8

Rmmc Slope sigmoidal
function:

2/3 0, 1/32

Rtcr Slope sigmoidal
function:

2/3 0, 1/16

d1…2 Intrinsic delays [msec]:
[within MMC; within
THAL]

[1] 0,0

D1…2 Extrinsic delays [msec]:
[from MMC to THAL;
from THAL to MMC]

[8] 0,0

αc;βc Channel unspecific
observation noise

[0 0] 0, 1/128

αs;βs Channel specific
observation noise

[0 0] 0, 1/128

L Observation gain [1] 0, 64
J Contributing states: [SP,

MP, DP]
[0.6 0.2 0.2] 0, 1/16

hE Log-precision of
observed data

12 0, 1/32
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with previous models of the sensory cortex – and incorporating the work
of Yamawaki et al., 2014 - Bhatt et al. (2016) used 3 excitatory sub-
populations (neuronal ensembles consisting of “superficial”, “middle”
and “deep” pyramidal cells located in the supragranular, granular and
infragranular cortical layers, respectively) and one common inhibitory
subpopulation (inhibitory interneurons) to model the primary motor
cortex. In the MMC model, the coupling between these subpopulations
(GABAergic or glutamatergic synapses) is tailored according to synaptic
characteristics of the primary motor cortex: a reciprocal connection be-
tween superficial and middle pyramidal cells (Yamawaki et al., 2014), a
reciprocal connection between superficial and deep pyramidal cells
(Hooks et al., 2013; Yamawaki and Shepherd, 2015; Anderson et al.,
2010; Weiler et al., 2008), a reciprocal connection between each of the
three pyramidal subpopulations and the common inhibitory subpopula-
tion (Fino et al., 2013), and a cell type specific self-inhibitory connection
(Bastos et al., 2012; Yoshimura and Callaway, 2005). The self-inhibitory
connections aim to capture laminar-specific inhibition, mediated by local
inhibitory neurons (K€atzel et al., 2011). For further discussion on
recurrent inhibitory connections in the context of the canonical micro-
circuit model, please refer to Auksztulewicz and Friston (2015).

In this study, the thalamus was modelled using an excitatory sub-
population (neuronal group of thalamic relay cells) and an inhibitory
subpopulation (neuronal group of thalamic reticular cells) (Shepherd and
Grillner, 2010) that were connected as follows: a reciprocal connection
between relay and reticular cells (Harris, 1987; Cox et al., 1997) and a
self-inhibitory connection of reticular cells (Shu and McCormick, 2002).
Although we acknowledge that there are distinct thalamic nuclei (i.e.
neuronal ensembles receiving afferents from different brain regions
(Sherman & Guillery, 2001) the thalamus was modelled here as a single
neuronal mass model. An important extension of the current work would
be to subdivide the motor thalamus (ventral anterior, ventral lateral and
ventral medial nuclei in rodents) into input zones that receive GABAergic
drive from the Basal-Ganglia and glutamatergic drive from the cere-
bellum (Kuramoto et al., 2011; Nakamura et al., 2014).

To model the extrinsic synaptic interactions between themotor cortex
and thalamus we used two corticothalamic projections from deep pyra-
midal cells to thalamic relay cells and thalamic reticular cells (Bourassa
et al., 1995; Jones, 2001). Although the thalamus is thought to project to
all layers of the cortex (Hooks et al., 2013) and the ventromedial nucleus
(VM) of the motor thalamus has been shown via immunochemistry
studies to project mainly to layers I and II of the motor and anterior
cingulate cortices (Arbuthnott et al., 1990; Clasc�a et al., 2012; Kuramoto
et al., 2015), it is not clear which thalamocortical projections are
important in modulating beta power. To resolve this, we considered
different models to test the impact of including different connections on
model evidence (section 2.3.4.). Operationally, the difference between
within-structure (intrinsic) connections and between-structures connec-
tions (extrinsic), relies on their propagation delay parameters (Table.1).
Aiming to bring bio-plausibility to the TC neural mass model architec-
ture, here the propagation delays of extrinsic connections (thalamo-
cortical and corticothalamic projections) were set to 8msec while the
propagation delays of intrinsic dynamics (intracortical and intrathalamic
connections) were set to 1msec

2.3.2. Neural dynamics
In DCM, neural dynamics (i.e., fluctuations in voltages and currents)

at the subpopulation level is described by two key operations (Eq. (2)): a
convolution operator and an output operator (Moran et al., 2007). The
convolution operator transforms presynaptic inputs (firing rate) into
postsynaptic membrane potentials based on a synaptic impulse response
function, which considers the nature of the synapse (i.e. excitatory or
inhibitory).

The output operator consists of a non-linear function that converts the
postsynaptic membrane potentials into a firing rate to be relayed to
another subpopulation. This is conveyed through a sigmoid function
S which captures the membrane sensitivity and firing threshold of each
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subpopulation. Furthermore, the shape of the sigmoid function (slope)
measures the efficacy of a presynaptic ensemble to generate output. This
output is additionally scaled by the synaptic coupling strength as illus-
trated by the following generic second order differential equation:

€v
a

j ¼
 
γakS
�
vak
�þ λbmS

�
vbm
�þ I � 2 _vaj �

vaj
Ta
j

!,
Ta
j (2)

Here, the averaged membrane potential v of the subpopulation j in the
source a is influenced by subpopulations of the same source with synaptic
strength γ and subpopulations from different sources with synaptic
strength λ. Intrinsic synapses γ show a positive synaptic strength if glu-
tamatergic and negative synaptic strength if GABAergic. S denotes the
sigmoid function above and T the subpopulation-specific membrane time
constant. Endogenous fluctuations or input, I is modelled as a mixture of
white and pink noise and drives middle pyramidal cells and thalamic
relay cells. The rationale for modelling afferent input to both the motor
cortex and thalamus (as opposed to restricting the model to thalamic
input) rests on the fact that both motor cortex and thalamus receives
input from other (unmodelled) components of the motor system. Exam-
ples here include inputs from supplementary motor areas and premotor
cortex to primary motor cortex (Jones et al., 1975) and inputs from basal
ganglia and cerebellum to motor thalamus (Kuramoto et al., 2011;
Nakamura et al., 2014).

In this study, we used DCM for cross spectral density (Moran et al.,
2009, 2011) where the data generated by a model of neural hidden states
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are expressed as cross spectra in channel space (ECoG screw electrodes).
In the context of electrophysiological recordings, the mapping between
neural states and observed signals is achieved by a gain function - unlike
EEG/MEG data where an electromagnetic forward model is used.
Contribution of each neural population to the cortical output is weighted
according to parameter J (Table 1 - contributing states: [Superficial,
Middle and Deep Pyramidal populations] - [0.6 0.2 0.2]) scaled by
observation gain L (Table 1 - [1]). A detailed description of the trans-
formation from state space to the frequency domain can be found in
Friston et al. (2012) (pages 442 and 443; section “From models to ker-
nels”: equations (5)–(7)).

A summary of the parameters described in this section and their prior
values are shown in Table.1. Prior values were based on previous DCM
studies (Bhatt et al. 2016) and optimized for our study.
Fig. 3. Competing models of the Thalamocortical circuit as described by factors 1 and
(factor 1: architecture) describes the 9 families of models constructed to elucidate
generation of beta oscillations (1.- 3.) accounts for a singular projection from thalamu
pyramidal cells; (4.- 6.) accounts for two afferents to two excitatory subpopulations
pyramidal cells and superficial plus deep pyramidal cells, and (7.- 9.) accounts for pro
the middle pyramidal subpopulation and inhibitory interneurons and deep pyramidal
and/or extrinsic) responsible for an enhancement of beta power, the models on th
configurations, under each of the 9 architectures described above. The first eight set o
model 8, with no intrinsic modulation) and the second eight set of connections (9.-1
family 2 were: (1. and 9.) cortical modulation via reciprocal connection between sup
reciprocal connection between superficial and middle pyramidal subpopulations; (3
interneurons subpopulation; (4. and 12.) thalamic modulation via reciprocal conne
modulation via reciprocal connection between superficial and deep pyramidal subpop
14.) cortical modulation via reciprocal connection between superficial and middle p
relay cells; (7. and 8.) self-inhibitory connection of the inhibitory interneuron subp
lastly, (8. and 16.) the null hypothesis that neither extrinsic nor intrinsic connect
enhancement of beta).
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2.3.3. Model inversion
In DCM, model inversion iteratively tunes the model's parameters to

optimize the fit of the predicted electrophysiological data to the observed
data. Using a standard (variational) Bayesian scheme, model inversion
uses priors to constrain the search of parameter space to explain the
observed spectral features of electrophysiological data. When fitting the
data (i.e., inverting the model), the optimization of model parameters
uses a variational Laplace scheme to minimize a (free energy) bound on
(negative) log model evidence. This free energy approximation to model
evidence is subsequently used for model comparison (Friston et al., 2007;
Friston and Stephan, 2007).

In brief, model evidence is the (marginal) likelihood of observing data
given a model, pðyjmÞ. It reflects a balance between accuracy (goodness
of fit between predicted and observed spectral densities) and complexity
2 (9 architectures times 16 modulatory configurations). The diagram on the top
which thalamocortical projections are the most plausible explanation for the

s to motor cortex via superficial pyramidal cells, middle pyramidal cells and deep
of the motor cortex via superficial and middle pyramidal cells, middle and deep
jections to the superficial pyramidal subpopulation and inhibitory interneurons,
cells and inhibitory interneurons. To disclose the synaptic modulation (intrinsic
e bottom (factor 2: modulatory configuration) feature 16 different modulatory
f connections (1.-8.) entail extrinsic and intrinsic synaptic modulation (except for
6.) considers intrinsic modulation only. The intrinsic modulatory connections in
erficial and deep pyramidal subpopulations; (2. and 10.) cortical modulation via
. and 11.) cortical modulation via self-inhibitory connection of the inhibitory
ction between reticular cells and relay cells; (5. and 13.) cortical and thalamic
ulations plus reciprocal connection between reticular cells and relay cells; (6. and
yramidal subpopulations plus reciprocal connection between reticular cells and
opulation plus reciprocal connection between reticular cells and relay cells and
ions change to explain condition specific changes in cortical beta power (i.e.
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(divergence between prior and posterior parameter estimates) (Stephan
et al., 2010). This balance depends upon the expected precision of the
observed data. Given the high signal to noise ratio in the data obtained
using the electrocorticographic recordingmethod, the expected precision
of observed data was assumed to be high (with a log precision of 12).

At this stage, low beta power was set as our baseline condition (with
prior expectations optimized to best explain its spectral features).
Condition-specific effects (B parameters) on both extrinsic (between-re-
gions) and intrinsic (within-regions) coupling strengths (Moran et al.,
2007) were used to explain periods of high beta power. In other words,
we estimated the changes in synaptic efficacy required to move from a
low beta power condition to a high beta power condition.

2.3.4. Bayesian Model Comparison and parameters analysis
A set of models were implemented which varied according to 2 fac-

tors: i) the laminar-specificity of thalamocortical projections that
generate beta oscillations, and ii) the changes in synaptic connectivity
within the TC loop (intrinsic and/or extrinsic) required to induce a
transition from a low beta power condition to a high beta power
condition.

The first factor comprised 9 families (types) of models. These models
had identical intrinsic and corticothalamic connections as described in
section 2.3.1 and illustrated in Fig. 2 but differed in the laminar targets of
thalamocortical afferents: 1) superficial pyramidal cells; 2) middle py-
ramidal cells; 3) deep pyramidal cells; 4) superficial plus middle pyra-
midal cells; 5) middle plus deep pyramidal cells; 6) superficial plus deep
pyramidal cells; 7) superficial pyramidal cells plus inhibitory in-
terneurons; 8) middle pyramidal cells plus inhibitory interneurons and 9)
deep pyramidal cells plus inhibitory interneurons (Fig. 3, top panel).

The second factor comprised 16 families of models that varied in the
set of connections that could show condition specific effects. For each one
of the 9 architectures in the first factor, we explored condition specific
effects by including or not the following features: intracortical modula-
tory synapses; intrathalamic modulatory synapses and extrinsic (between
cortex and thalamus) modulatory synapses (Fig. 3, bottom panel). There
were therefore 9� 16¼ 144 candidate models in total.

Bayesian Model Comparison (BMC) was used to determine the model
with the highest log-model evidence among the models described above
(Stephan et al., 2010). We then characterised the parameters of the
winningmodel at the group level using Parametric Empirical Bayes (PEB)
(Friston et al., 2015). In brief, PEB uses a hierarchical model, where the
parameters from each subject's DCM are summarized by a posterior
density (the expected connectivity strength and posterior covariance).
Random effects at the between subject level are similarly inferred to
inform the group-level parameter estimates. This means that PEB allows
for estimation of fixed and random effects in an optimal fashion;
implicitly reducing the influence of “outlier subjects” on the posterior
Fig. 4. Observed and expected power spectral densities (PSD). (A) Spectral features t
and blue lines the mean low beta spectral densities from each of the 36 rats. (B) Group
variabilities (75th and 25th percentiles of the mean spectra) denoted in light red an
spectral densities generated by the winning model. The full red line shows the mean o
the winning model (correlation coefficient, r¼ 0.9997). The full dark blue line refers t
produced by the winning model (correlation coefficient, r¼ 0.9957).
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density at the group level. Note that in Bayesian inference, (unstan-
dardized) effect sizes are available explicitly in terms of posterior ex-
pectations and Bayesian credible intervals (Standardized effect sizes such
as correlations are replaced by differences in model evidence – implicit in
Bayesian model comparison). Here, only a subset of parameters was
taken to the group level and assumed to exhibit random effects: synaptic
coupling strength of intrinsic and extrinsic connections (G and A pa-
rameters in the DCM respectively); condition-specific effects on coupling
strength (B parameters) and the time constants of subpopulations (T).

3. Results

3.1. Model selection

The model with the highest evidence for the transition from low beta
epochs to high beta epochs (Fig. 4) was that with i) an architecture
featuring thalamocortical projections from the REL-DP and REL-II in
cortex and ii) modulatory changes in: intrinsic connections at the cortical
level between SP-MP; intrinsic connections at the thalamic level, be-
tween REL-RET; corticothalamic extrinsic connections from DP-REL and
DP-RET and thalamocortical connections from REL-DP and REL-II. The
set of differential equations explaining the neural dynamics of the win-
ning model can be found in the supplementary materials (Fig.S5). The
winning model shows a free energy difference (i.e., log Bayes factor) of
approximately 6 from the next closest model (Fig.S2). This corresponds
to very high evidence for the winning model, in relation to alternative
explanations.

Using fixed-effects Bayesian Model Comparison (FFX-BMC) to make
inferences at the family level, the architecture with thalamic projections
to DP and II showed the highest evidence across subjects (Fig. 5A).
Similarly, the condition specific effects in the reciprocal connection be-
tween SP -MP, REL-RET and DP-REL plus connections from DP-RET and
REL-II had the highest posterior probability (Fig. 5B). These results
confirm our hypothesis that both the laminar-specificity of extrinsic
connectivity and intrinsic connections are key elements underlying the
modulation of oscillatory activity in the beta band.
3.2. Parameter analysis

The results from our second level analysis (PEB modelling of A,G,B
and T parameters at the group level) suggest that the transition from low
beta state to high beta state is induced by i) an increase in synaptic
strength in connections from relay cells to inhibitory interneurons, relay
cells to deep pyramidal cells, middle pyramidal cells to superficial py-
ramidal cells and relay to reticular cells; plus ii) a reduction of synaptic
strength in connections from superficial to middle pyramidal cells, deep
pyramidal to both relay and reticular cells and from reticular to relay
o be explained by a DCM: Red lines depict the mean high beta spectral densities
mean of HB spectral densities in red and LB spectral densities in blue. Respective
d light blue. (C) Goodness of the fits between mean data spectral densities and
f high beta data and the dark red dashed line the high beta spectra estimated by
o the mean of low beta data and the dark blue dashed line to the low beta spectra



Fig.5. Schematic and posterior probability of the
winning model selected via FFX-BMC. Diagram
and bar plot (A) refer to architecture of the win-
ning model (Fig. 3, Factor 1: Architecture, num-
ber 9). These results suggest that thalamocortical
projection to the deep pyramidal cells and cortical
inhibitory subpopulation (in thick lines) were
crucial for the generation of beta oscillations and
that this effect was consistently observed across
subjects (posterior probability of 1). Diagram and
bar plot (B) indicate the modulatory connections
of our winning model (Fig. 3, Factor 2: Modula-
tory configuration, number 6). The diagram
shows the set of connections as thick lines to have
a higher likelihood (compared to the homologous
15) of inducing the power spectral changes
observed (beta enhancement). These being: a
reciprocal connection between superficial and
middle pyramidal subpopulations, reciprocal
connection between thalamic relay and reticular
subpopulation and a reciprocal extrinsic connec-
tion between deep pyramidal cells and thalamic
relay cells, an extrinsic connection from deep
pyramidal cells to thalamic reciprocal cells and
from thalamic relay cells to cortical inhibitory
interneurons. The bar plot shows a posterior
probability greater than 0.99 for the modulatory
configuration described above and a negligible
posterior probability of approximately 0.004 for a
modulatory configuration which assumed the
same modulatory characteristics as the winning
model except for the intrinsic synaptic mecha-
nisms of the motor cortex; i.e., presenting an
intracortical modulation via reciprocal connec-
tions between superficial and deep pyramidal
cells instead of reciprocal connections between
superficial and middle pyramidal cells. (Ex.-
extrinsic connections, r. - reciprocal connections,
sp. - superficial pyramidal cells, mp.-middle py-
ramidal cells, dp. - deep pyramidal cells, ii.-
inhibitory interneurons, rel. – relay cells and ret. –
reticular cells).
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cells (Fig. 6). Additionally, from the posterior distribution of our B pa-
rameters we assessed the effect size of each modulatory connection on
the enhancement of beta – illustrated in the bar plot below (Fig. 6).

Considering the connections that showed the greatest change to
Fig. 6. Average modulatory effect of B parameters (condition-specific parameters) ob
plots on the left-hand side illustrate the absolute connection strength of each modula
shows how connectivity strength of B parameter changed at the group level in ord
reduction in connectivity strength and positive values an increase. The anatomy of t
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explain beta enhancement: REL-DP, MP-SP and REL-RET; we further
analysed, via forwardmodelling, the impact of simultaneous alteration of
the above connection strengths on the magnitude of beta power. As such,
we aimed to characterize the contribution of these three parameters to
tained via Parametric empirical Bayes analysis (Friston et al., 2015). The two bar
tory connection in the low and high beta conditions. The bar plot in the centre
er to induce an increase of beta power. Negative values of change indicate a
hese connections is illustrated in the diagram on the right-hand side.
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the gradual transition between the two states – low and high beta power.
To do so, we have effectively replaced the MP-SP and REL-RET posteriors
with values between �1 and 1 and plotted the summed beta spectral
output (15–35Hz) normalised by the summed beta spectral output
(15–35Hz) in the baseline condition (i.e. low beta power). This post hoc
simulation allows us to characterize the selective effect of specific con-
nections on the expression of cortical beta power level. Fig. 7A, suggests
that when the intrinsic thalamic connection from relay to reticular cells
have low levels of coupling strength, high beta power appears abruptly as
the coupling strength from middle to superficial pyramidal cells is
increased. This emergence of beta is modulated by the gradual change in
coupling strength from thalamic relay cells to deep pyramidal cells,
where reduced coupling leads to higher levels of beta.

On the other hand, Fig. 7B, suggests that when the connectivity from
relay to reticular cells is high, a concurrent increase in the coupling from
both relay to deep pyramidal cells and middle to superficial pyramidal
cells is required to achieve beta power enhancement. In short, the level of
cortical beta depends on the magnitude of excitatory inputs to both su-
perficial and deep pyramidal.

We additionally explored the spectral output of each subpopulation of
our TC neural mass model (Fig. 8) and observed that all nodes generated
spectral curves within the beta band during both conditions and
increased their power from condition one (LB) to two (HB) as expected.
Please note that the plotted curves represent the source-space activity,
which has been estimated separately for each data set.

4. Discussion

In this study, we aimed to identify the network mechanisms that
contribute to the dynamic regulation of beta synchrony in the parkin-
sonian motor cortex. In-vivo studies of the basal ganglia thalamocortical
(BGTC) circuit suggest that alterations in the firing rate across the direct
and indirect pathways are responsible for the motor impairments
observed in PD (Albin et al., 1989; DeLong, 1990; Nambu, 2004). Simi-
larly, in-silico simulations of the BGTC circuit propose that an altered
coupling from the subthalamic nucleus to globus pallidus externus, and
strengthening of the hyperdirect pathway play an important role in the
enhancement of beta synchrony following chronic dopamine depletion
(Marreiros et al., 2013; Moran et al., 2011).

Our study complements the literature on PD, while exploring two
novel concepts: i) laminar-specific dynamics within the motor circuit as a
putative mechanism for the spontaneous modulation of beta power and
ii) short-term synaptic processes, i.e. transient alterations in effective
connectivity to be responsible for the spontaneous and intermittent
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nature of beta power observed in Parkinsonian time-series.
Focusing on the Thalamocortical loop of the BGTC circuit, we have

employed DCM to identify a model of TC interactions that offers plausible
substrates for the transient enhancement of cortical beta. Our study
suggests two core features of the thalamocortical circuit that may un-
derwrite the genesis of beta oscillations in the parkinsonian state: 1)
laminar specific thalamocortical projections; and 2) modulation of syn-
aptic strength across all network levels (i.e. within and between
structures).

To model different levels of beta synchrony, we extracted low beta
epochs and high beta power epochs from motor cortex ECoG recordings
acquired from urethane-anesthetized rodents rendered Parkinsonian by
6-OHDA lesions. This rodent model is useful in capturing the chronic
dopamine depletion that is common to ‘late stage’ PD, and has been
widely used for studies of the mechanisms by which excessive beta
synchrony arises and propagates within the BGTC circuit in Parkin-
sonism. Although urethane has been shown to alter the function of
multiple neurotransmitter receptors - which will dictate various aspects
of neural activity such as firing rate – its effects occur to a much smaller
extent when compared to other anaesthetics (Hara and Harris, 2002).
The dose of urethane allows clear differentiation of slow wave and
activated states; only the latter of which resembles the awake brain state
and contains abnormally sustained beta oscillations in the dopamine
depleted animal (Mallet et al., 2008a, b; Sharott et al., 2017). Finally, the
abnormal beta oscillations present in the BGTC circuit in anesthetized
and behaving 6-OHDA lesioned are similar in many respects to those
present in unmedicated people with PD (Avila et al., 2010; Brazhnik
et al., 2016; Degos et al., 2009; Mallet et al., 2008a, 2008b; Nevado--
Holgado et al., 2014; Sharott et al., 2005, 2017).

We have used DCM in this study since it allows for the quantification
of effective connectivity changes underlying transient modulations in
cortical beta power. Bhatt et al., 2016 have previously employed DCM to
link interlaminar dynamics within the motor cortex to the modulation of
beta activity, evoked by movement. Fitting MEG data from healthy
subjects to a neural mass model of the motor cortex, Bhat and colleagues
reported that the increase in beta power observed due to the transition
from grip to rest was induced by an increase in the extrinsic input applied
to deep and superficial layers of the cortex. Our study suggests that beta
power enhancement in Parkinsonism can be attributed to an increase in
excitatory inputs to SP and DP; specifically from MP and thalamic relay
cells, respectively – and a concomitant reduction of excitatory input to
MP. In addition, our results highlight the importance of intrinsic in-
teractions in the thalamus for beta power modulation as the excitatory
projection from the thalamic relay cells to reticular cells also contributes
Fig. 7. Exploration of parameters space of connections
with the greatest effect on beta enhancement. Plot A.
shows the impact of changing the coupling strength of MP-
SP and REL-DP on the beta spectral output, when the
coupling between REL-RET is weak. Here, although an in-
crease in synaptic strength from MP-SP is enough to
generate relatively high levels of beta spectral output, the
connection from REL-DP seems to have a modulatory ef-
fect, i.e., the weaker the extrinsic coupling between relay
and deep pyramidal cells the higher the beta spectral
output. Plot B. considers a (constantly) strong coupling
between REL-RET with the same changes in coupling
strength between MP-SP and REL-DP. This time, we
observe that an increase in beta is achieved with a con-
current strengthening of both MP-SP and REL-DP connec-
tions. In both plots, axis x and y denote a reduced
connectivity strength when values are between �1 and
0 and an increased connectivity strength when values are
between 0 and 1 for connections from middle pyramidal
cells to superficial pyramidal cells and from relay cells to
deep pyramidal cells respectively. Axis Z and colormap
depict the magnitude of beta power.



Fig. 8. Spectral output of subpopulations at Low Beta (LB) and High Beta (HB). All neural groups (in cortex and thalamus) have generated spectral responses within
the beta band in both conditions as expected. Together with an increase in power a small increase in frequency peak of approximately 1–2 Hz is also apparent – when
comparing the output generated in condition 1 (LB) with condition 2 (HB). Full curves represent the median spectral output across the 36 animals and shaded regions
refer to the 25th and 75th percentiles.
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to cortical beta enhancement (Fig. 6).
Similarly, focusing on cortical intrinsic dynamics, Sherman et al.

(2016) used a computational model to generate transient high beta
power events (i.e. beta bursts), which were temporally identical to those
observed in the somatosensory and frontal cortices in the physiological
state. Two circuit features have been proposed as crucial for the gener-
ation of beta bursts: 1) a drive from the lemniscal thalamus to the
proximal dendrites of the pyramidal neurons and inhibitory interneurons
in L2/3 and L5 (via the granular layer) and 2) a strong drive from the
nonlemniscal thalamus to the distal dendrites of the pyramidal neurons
and inhibitory interneurons found in supragranular and infragranular
layers.

It should be noted that due to the nature of the neural mass models
employed in this study, we were not able to model detailed dendritic
dynamics that contribute to the generation and modulation of neural
activity in the beta band. Instead, here we have assumed fixed conduc-
tion delays for all within-region connections (1m s) and between-regions
projections (8m s) and did not account for variable propagation delays
for inputs arriving to distal and proximal dendrites. This creates a
distinction between the excitatory input received by the superficial py-
ramidal cells versus those received by the deep pyramidal cells and the
common inhibitory population; since the latter are attributed to extrinsic
projections from thalamus and hence are inherently modelled with
longer conduction delays. Nonetheless, our results relate to the obser-
vations made in Sherman et al. (2016), given that comparable circuitry
mechanisms yielded similar oscillatory effects. In other words, both
studies propose that laminar specific glutamatergic inputs to the motor
cortex must occur at two temporally separate instances in order to ach-
ieve high beta power oscillatory activity.

Furthermore, it is worth noting that alternative models of the TC
circuit showing thalamic projections to both the superficial and deep
layers of the motor cortex (i.e., all models with architecture number 6,
shown in Fig. 3), had lower model evidences than the winning model.
Possibly because, unlike the winning model, simultaneous projections
from thalamic relay cells to superficial and deep layers do not allow for a
differentiation in input delays. Our detailed analysis of the parameter
space on gradual beta increase, opposed to a transition from extremely
low to extremely high beta power, further corroborated that the intrinsic
(shorter delay) input from middle to superficial cells should have high
levels of synaptic strength – together with the extrinsic (longer delay)
input from the thalamic relay to deep pyramidal cells – to explain an up-
regulation of beta synchrony when the coupling from thalamic relay to
reticular is strong. (Fig. 7B). Nevertheless, taking both scenarios into
account – strong vs weak connectivity from relay cells to reticular cells -
projections to superficial pyramidal cells via middle pyramidal cells must
assume a moderate coupling strength to avoid a ramping up of beta
synchrony at the cortical level; highlighting a potential substrate that
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could be targeted in order to control and modulate cortical beta.
An important difference between Sherman et al. (2016) and our study

stems from the assumptions made on thalamic activity patterns. Sherman
et al. (2016) posit that thalamic activity should be in the alpha band to
drive beta bursts in the somatosensory and frontal cortices. However, in
our study, thalamic neurons exhibited activity in the beta band during
both low and high beta power conditions (Fig. 8). Our results are sup-
ported by recent experimental work showing a substantial and coherent
enhancement of beta activity (30–36 Hz) in the motor thalamus and
motor cortex of behaving 6-OHDA-lesioned rats (Brazhnik et al., 2016).
There is also evidence of aberrant beta synchrony in the thalamus of
unmedicated PD patients (Kempf et al., 2009). Taken together, these
results emphasise that thalamic neural activity in the beta band is likely
to be a contributing circuit feature for the generation of aberrant beta
synchronization in PD, and highlight a functional coupling between the
thalamus and deep layers of the motor cortex.
4.1. Limitations and future directions

Wewould like to highlight that in DCM, “winning model” is a relative
terminology. Winning model is effectively the most plausible model to
generate the observed data among the set of models tested. As indeed
there are plenty of configurations a neural mass model can assume (here
144 were tested), DCM is only a robust method if used as a hypothesis-
driven approach (Stephan et al., 2010).

Finally, an interesting extension of this study would involve using a
conductance based neural mass model of the thalamocortical circuit to
investigate in detail the intrinsic neurotransmitter dynamics underlying
beta enhancement in the parkinsonian thalamocortical circuit. While
convolution-based models are useful in explaining the “macroscopic
mechanisms” underlying a given data set, such as network architecture
and effective connectivity; conductance-based models would capture the
dynamics of intrinsic ion channel mediators, such as Glutamaergic and
GABAergic receptors (refer to Moran et al., 2013). This could be
extremely interesting given the modulatory role that GABA-A is thought
to exert over beta oscillations (Brazhnik et al., 2016; Hall et al., 2010;
Jensen et al., 2005; Yamawaki et al., 2008).

5. Conclusion

A broadly accepted postulate concerning healthy and Parkinsonian
states of the CBGTC circuit is that they exhibit differential patterns of
synchronization at beta frequencies (Brittain and Brown, 2014; Gatev
et al., 2006; Hammond et al., 2007). While exaggerated beta synchro-
nization has been associated with more frequent high power beta bursts
in PD (Tinkhauser et al., 2017; Little et al., 2013), healthy states seem to
manifest as an adequate proportion of high beta events and therefore a
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flexible motor behaviour (Feingold et al., 2015; Sherman et al., 2016).
Following this reasoning, a recognition of the mechanisms adopted by
the CBGTC network to regulate beta spectral undulations is vital to better
understand healthy and diseased states; and consequently, inform novel
therapeutic strategies. Here, using DCM, we highlight a set of synaptic
alterations in the thalamocortical loop that elucidate how the transitions
of beta synchrony from low to high levels might occur in Parkinson's
disease. We provide a new perspective for the effective coupling of the
Parkinsonian thalamocortical network, where a fine regulation of
temporally different inputs to specific laminae of the motor cortex may
underlie the spontaneous and transient variability in oscillatory neural
activity in the beta band across the circuit.
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