242 research outputs found

    Assessment of methods to reduce the energy consumption of food cold stores

    Get PDF
    Energy is a major cost in the operation of food cold stores. Work has shown that considerable energy savings can be achieved in cold stores. Results from 38 cold store audits carried out across Europe are presented. Substantial savings could be achieved if operation of cold storage facilities were optimised in terms of heat loads on the rooms and the operation of the refrigeration system. Many improvements identified were low in cost (improved door protection, defrost optimisation, control settings and repairs). In large stores (>100 m3) most improvements identified were cost effective and had short payback times, whereas in small stores there were fewer energy saving options that had realistic payback times. The potential for large energy savings of at minimum 8% and at maximum 72% were identified by optimising usage of stores, repairing current equipment and by retrofitting of energy efficient equipment. Often these improvements had short payback times of less than 1 year. In each facility the options to reduce energy consumption varied. This indicated that to fully identify the maximum energy savings, recommendations need to be specific to a particular plant. General recommendations cannot fully exploit the energy savings available and therefore to maximise energy savings it is essential to monitor and analyse data from each facility. © 2013 Elsevier Ltd. All rights reserved

    Unisexual infection with Schistosoma mansoni in mice has the potential to boost the immune response against eggs after challenge infection

    Get PDF
    IntroductionThe complexity of the Schistosoma spp. life cycle and their effective immune evasion strategies, makes vaccine development challenging. Unisexual infection models, that excludes any immunomodulatory effects of the parasite eggs, may contribute to a better understanding of complex immunological processes and identification of new targets for vaccine research. We have recently shown that long-term unisexual infection with schistosomes in mice results in an unpolarized Th1/Th2 response associated with an abnormally enlarged spleen and diffuse liver inflammation. Herein, we investigated whether (i) unisexual worms can mate after three months of single sex infection and (ii) thus the Th2 response induced by oviposition can reverse or heal the described systemic inflammation.MethodsTherefore, we infected 6–8 weeks old female C57BL/6j mice with 100 male or female cercariae and reinfected with the opposite sex for the same period after 12 weeks. At 24 weeks after initial infection, we histologically examined worm mating, as evidenced by the presence of parasite eggs, infection-related pathology associated with eggs, and characterization of fibrosis in the livers.ResultsSingle worms are able to mate months after unisexual infection and start oviposition. Egg deposition has been associated with a typical Th2 immune response in the liver after unisexual reinfection, accompanied by increased recruitment of CD4+ T cells. Hepatic collagen levels were significantly increased in the reinfected groups compared to the naive and unisexually infected group.DiscussionOur results indicate that the eggs are able to restore the Th1/Th2 immune balance of a previous unisexual infection. However, the organ damage caused by the unisexual worms does not subside, but rather provides the baseline for the emerging egg-triggered inflammation and fibrosis. Since single schistosomes can mate even several weeks after unisexual infection and then accumulate worm- and egg-related organ damage, infection status without positive egg detection is very important, especially in areas with low prevalence

    Role of sialidase in glycoprotein utilization by Tannerella forsythia

    Get PDF
    The major bacterial pathogens associated with periodontitis include Tannerella forsythia. We previously discovered that sialic acid stimulates biofilm growth of T. forsythia, and that sialidase activity is key to utilization of sialoconjugate sugars and is involved in host–pathogen interactions in vitro. The aim of this work was to assess the influence of the NanH sialidase on initial biofilm adhesion and growth in experiments where the only source of sialic acid was sialoglycoproteins or human oral secretions. After showing that T. forsythia can utilize sialoglycoproteins for biofilm growth, we showed that growth and initial adhesion with sialylated mucin and fetuin were inhibited two- to threefold by the sialidase inhibitor oseltamivir. A similar reduction (three- to fourfold) was observed with a nanH mutant compared with the wild-type. Importantly, these data were replicated using clinically relevant serum and saliva samples as substrates. In addition, the ability of the nanH mutant to form biofilms on glycoprotein-coated surfaces could be restored by the addition of purified NanH, which we show is able to cleave sialic acid from the model glycoprotein fetuin and, much less efficiently, 9-O-acetylated bovine submaxillary mucin. These data show for the first time that glycoprotein-associated sialic acid is likely to be a key in vivo nutrient source for T. forsythia when growing in a biofilm, and suggest that sialidase inhibitors might be useful adjuncts in periodontal therapy

    Initiatives to reduce energy use in cold stores

    Get PDF
    The cold chain is believed to be responsible for approximately 2.5% of global greenhouse gas emissions through direct and indirect (energy consumption) effects. Cold storage rooms consume considerable amounts of energy. Within cold storage facilities 60-70% of the electrical energy can be used for refrigeration. Therefore cold store users have considerable incentive to reduce energy consumption

    The Mutant Mouse Resource and Research Center (MMRRC): the NIH-supported National Public Repository and Distribution Archive of Mutant Mouse Models in the USA.

    Get PDF
    The Mutant Mouse Resource and Research Center (MMRRC) Program is the pre-eminent public national mutant mouse repository and distribution archive in the USA, serving as a national resource of mutant mice available to the global scientific community for biomedical research. Established more than two decades ago with grants from the National Institutes of Health (NIH), the MMRRC Program supports a Consortium of regionally distributed and dedicated vivaria, laboratories, and offices (Centers) and an Informatics Coordination and Service Center (ICSC) at three academic teaching and research universities and one non-profit genetic research institution. The MMRRC Program accepts the submission of unique, scientifically rigorous, and experimentally valuable genetically altered and other mouse models donated by academic and commercial scientists and organizations for deposition, maintenance, preservation, and dissemination to scientists upon request. The four Centers maintain an archive of nearly 60,000 mutant alleles as live mice, frozen germplasm, and/or embryonic stem (ES) cells. Since its inception, the Centers have fulfilled 13,184 orders for mutant mouse models from 9591 scientists at 6626 institutions around the globe. Centers also provide numerous services that facilitate using mutant mouse models obtained from the MMRRC, including genetic assays, microbiome analysis, analytical phenotyping and pathology, cryorecovery, mouse husbandry, infectious disease surveillance and diagnosis, and disease modeling. The ICSC coordinates activities between the Centers, manages the website (mmrrc.org) and online catalog, and conducts communication, outreach, and education to the research community. Centers preserve, secure, and protect mutant mouse lines in perpetuity, promote rigor and reproducibility in scientific experiments using mice, provide experiential training and consultation in the responsible use of mice in research, and pursue cutting edge technologies to advance biomedical studies using mice to improve human health. Researchers benefit from an expansive list of well-defined mouse models of disease that meet the highest standards of rigor and reproducibility, while donating investigators benefit by having their mouse lines preserved, protected, and distributed in compliance with NIH policies

    Mutation in Mouse Hei10, an E3 Ubiquitin Ligase, Disrupts Meiotic Crossing Over

    Get PDF
    Crossing over during meiotic prophase I is required for sexual reproduction in mice and contributes to genome-wide genetic diversity. Here we report on the characterization of an N-ethyl-N-nitrosourea-induced, recessive allele called mei4, which causes sterility in both sexes owing to meiotic defects. In mutant spermatocytes, chromosomes fail to congress properly at the metaphase plate, leading to arrest and apoptosis before the first meiotic division. Mutant oocytes have a similar chromosomal phenotype but in vitro can undergo meiotic divisions and fertilization before arresting. During late meiotic prophase in mei4 mutant males, absence of cyclin dependent kinase 2 and mismatch repair protein association from chromosome cores is correlated with the premature separation of bivalents at diplonema owing to lack of chiasmata. We have identified the causative mutation, a transversion in the 5′ splice donor site of exon 1 in the mouse ortholog of Human Enhancer of Invasion 10 (Hei10; also known as Gm288 in mouse and CCNB1IP1 in human), a putative B-type cyclin E3 ubiquitin ligase. Importantly, orthologs of Hei10 are found exclusively in deuterostomes and not in more ancestral protostomes such as yeast, worms, or flies. The cloning and characterization of the mei4 allele of Hei10 demonstrates a novel link between cell cycle regulation and mismatch repair during prophase I

    Genetic dissection of the pluripotent proteome through multi-omics data integration.

    Get PDF
    Genetic background drives phenotypic variability in pluripotent stem cells (PSCs). Most studies to date have used transcript abundance as the primary molecular readout of cell state in PSCs. We performed a comprehensive proteogenomics analysis of 190 genetically diverse mouse embryonic stem cell (mESC) lines. The quantitative proteome is highly variable across lines, and we identified pluripotency-associated pathways that were differentially activated in the proteomics data that were not evident in transcriptome data from the same lines. Integration of protein abundance to transcript levels and chromatin accessibility revealed broad co-variation across molecular layers as well as shared and unique drivers of quantitative variation in pluripotency-associated pathways. Quantitative trait locus (QTL) mapping localized the drivers of these multi-omic signatures to genomic hotspots. This study reveals post-transcriptional mechanisms and genetic interactions that underlie quantitative variability in the pluripotent proteome and provides a regulatory map for mESCs that can provide a basis for future mechanistic studies

    Specific energy consumption values for various refrigerated food cold stores

    Get PDF
    Two benchmarking surveys were created to collect data on the performance of chilled, frozen and mixed (chilled and frozen stores operated from a single refrigeration system) food cold stores with the aim of identifying the major factors influencing energy consumption. The volume of the cold store was found to have the greatest relationship with energy use with none of the other factors collected having any significant impact on energy use. For chilled cold stores, 93% of the variation in energy was related to store volume. For frozen stores, 56% and for mixed stores, 67% of the variation in energy consumption was related to store volume. The results also demonstrated the large variability in performance of cold stores. This was investigated using a mathematical model to predict energy use under typical cold store construction, usage and efficiency scenarios. The model demonstrated that store shape factor (which had a major impact on surface area of the stores), usage and to a lesser degree ambient temperature all had an impact on energy consumption. The work provides an initial basis to compare energy performance of cold stores and indicates the areas where considerable energy saving are achievable in food cold stores. © 2013 Elsevier B.V

    Utilization of a highly adaptable murine air pouch model for minimally invasive testing of the inflammatory potential of biomaterials

    Get PDF
    Introduction: The biocompatibility of an implanted material strongly determines the subsequent host immune response. After insertion into the body, each medical device causes tissue reactions. How intense and long-lasting these are is defined by the material properties. The so-called foreign body reaction is a reaction leading to the inflammation and wound healing process after implantation. The constantly expanding field of implant technology and the growing areas of application make optimization and adaptation of the materials used inevitable.Methods: In this study, modified liquid silicone rubber (LSR) and two of the most commonly used thermoplastic polyurethanes (TPU) were compared in terms of induced inflammatory response in the body. We evaluated the production of inflammatory cytokines, infiltration of inflammatory cells and encapsulation of foreign bodies in a subcutaneous air-pouch model in mice. In this model, the material is applied in a minimally invasive procedure via a cannula and in one piece, which allows material testing without destroying or crushing the material and thus studying an intact implant surface. The study design includes short-term (6 h) and long-term (10 days) analysis of the host response to the implanted materials. Air-pouch-infiltrating cells were determined by flow cytometry after 6 h and 10 days. Inflammation, fibrosis and angiogenesis markers were analyzed in the capsular tissue by qPCR after 10 days.Results: The foreign body reaction was investigated by macroscopic evaluation and scanning electron microscopy (SEM). Increased leukocyte infiltration was observed in the air-pouch after 6 h, but it markedly diminished after 10 days. After 10 days, capsule formations were observed around the materials without visible inflammatory cells.Discussion: For biocompatibility testing materials are often implanted in muscle tissue. These test methods are not sufficiently conclusive, especially for materials that are intended to come into contact with blood. Our study primarily shows that the presented model is a highly adaptable and minimally invasive test system to test the inflammatory potential of and foreign body reaction to candidate materials and offers more precise analysis options by means of flow cytometry
    • …
    corecore