20 research outputs found

    Four promoters subject to regulation by ExoR and PhoB direct transcription of the Sinorhizobium meliloti exoYFQ operon involved in the biosynthesis of succinoglycan

    No full text
    Quester I, Becker A. Four promoters subject to regulation by ExoR and PhoB direct transcription of the Sinorhizobium meliloti exoYFQ operon involved in the biosynthesis of succinoglycan. JOURNAL OF MOLECULAR MICROBIOLOGY AND BIOTECHNOLOGY. 2004;7(3):115-132.Succinoglycan (EPS I), the main acidic exopolysaccharide of Sinorhizobium meliloti, is required for the initiation and elongation of infection threads during nodulation of the host plant alfalfa. The gene products of the exoYFQ operon are involved in the first step of succinoglycan biosynthesis as well as in the polymerisation of subunits to the high-molecular-mass form of this exopolysaccharide. One promoter region that directs transcription of exoX and two promoter regions that drive transcription of exoY were mapped in the exoX-exoY intergenic region. The distal exoY promoter region containing three putative -10 promoter elements was active under standard growth conditions and was subject to ExoR-dependent regulation. Although this promoter region was stimulated in a phoB mutant, no PHO box-like sequences were found, suggesting an indirect regulatory effect of PhoB. The proximal promoter contains a PHO box-like sequence in the putative - 35 region and was affected by low and high phosphate concentrations dependent on PhoB. In the case of deleted upstream regions, this promoter was also controlled by ExoR. An additional promoter displaying activity in exoR, mucR and phoB mutants under standard conditions was identified upstream of exoF. The putative - 35 promoter element of this promoter is covered by a second PHO boxlike sequence. Copyright (C) 2004 S. Karger AG, Basel

    Polarization Transfer Observables in Elastic Electron Proton Scattering at Q2=Q^2 = 2.5, 5.2, 6.8, and 8.5 GeV2^2

    Get PDF
    International audienceBackground: Interest in the behavior of nucleon electromagnetic form factors at large momentum transfers has steadily increased since the discovery, using polarization observables, of the rapid decrease of the ratio GEp/GMp of the proton's electric and magnetic form factors for momentum transfers Q2≳1 GeV2, in strong disagreement with previous extractions of this ratio using the traditional Rosenbluth separation technique. Purpose: The GEp-III and GEp-2γ experiments were carried out in Jefferson Laboratory's (JLab's) Hall C from 2007 to 2008, to extend the knowledge of GEp/GMp to the highest practically achievable Q2 given the maximum beam energy of 6 GeV and to search for effects beyond the Born approximation in polarization transfer observables of elastic e⃗p scattering. This article provides an expanded description of the common experimental apparatus and data analysis procedures, and reports the results of a final reanalysis of the data from both experiments, including the previously unpublished results of the full-acceptance dataset of the GEp-2γ experiment. Methods: Polarization transfer observables in elastic e⃗p→ep⃗ scattering were measured at central Q2 values of 2.5, 5.2, 6.8, and 8.54 GeV2. At Q2=2.5GeV2, data were obtained for central values of the virtual photon polarization parameter ε of 0.149, 0.632, and 0.783. The Hall C High Momentum Spectrometer detected and measured the polarization of protons recoiling elastically from collisions of JLab's polarized electron beam with a liquid hydrogen target. A large-acceptance electromagnetic calorimeter detected the elastically scattered electrons in coincidence to suppress inelastic backgrounds. Results: The final GEp-III data are largely unchanged relative to the originally published results. The statistical uncertainties of the final GEp-2γ data are significantly reduced at ε=0.632 and 0.783 relative to the original publication. Conclusions: The final GEp-III results show that the decrease with Q2 of GEp/GMp continues to Q2=8.5GeV2, but at a slowing rate relative to the approximately linear decrease observed in earlier Hall A measurements. At Q2=8.5GeV2, GEp/GMp remains positive but is consistent with zero. At Q2=2.5GeV2, GEp/GMp derived from the polarization component ratio R∝Pt/Pℓ shows no statistically significant ε dependence, as expected in the Born approximation. On the other hand, the ratio Pℓ/PℓBorn of the longitudinal polarization transfer component to its Born value shows an enhancement of roughly 1.7% at ε=0.783 relative to ε=0.149, with ≈2.2σ significance based on the total uncertainty, implying a similar effect in the transverse component Pt that cancels in the ratio R

    High-resolution hypernuclear spectroscopy at Jefferson Lab, Hall A

    No full text
    International audienceThe experiment E94-107 in Hall A at Jefferson Lab started a systematic study of high-resolution hypernuclear spectroscopy in the 0p-shell region of nuclei such as the hypernuclei produced in electroproduction on Be9,C12, and O16 targets. In order to increase counting rates and provide unambiguous kaon identification, two superconducting septum magnets and a ring-imaging Cherenkov detector were added to the Hall A standard equipment. The high-quality beam, the good spectrometers, and the new experimental devices allowed us to obtain very good results. For the first time, measurable strength with sub-MeV energy resolution was observed for the core-excited states of BΛ12. A high-quality NΛ16 hypernuclear spectrum was likewise obtained. A first measurement of the Λ binding energy for NΛ16, calibrated against the elementary reaction on hydrogen, was obtained with high precision, 13.76±0.16 MeV. Similarly, the first LiΛ9 hypernuclear spectrum shows general agreement with theory (distorted-wave impulse approximation with the SLA and BS3 electroproduction models and shell-model wave functions). Some disagreement exists with respect to the relative strength of the states making up the first multiplet. A Λ separation energy of 8.36 MeV was obtained, in agreement with previous results. It has been shown that the electroproduction of hypernuclei can provide information complementary to that obtained with hadronic probes and the γ-ray spectroscopy technique
    corecore