160 research outputs found

    Caspase-8 is activated by cathepsin D initiating neutrophil apoptosis during the resolution of inflammation

    Get PDF
    In the resolution of inflammatory responses, neutrophils rapidly undergo apoptosis. We describe a new proapoptotic pathway in which cathepsin D directly activates caspase-8. Cathepsin D is released from azurophilic granules in neutrophils in a caspase-independent but reactive oxygen species–dependent manner. Under inflammatory conditions, the translocation of cathepsin D in the cytosol is blocked. Pharmacological or genetic inhibition of cathepsin D resulted in delayed caspase activation and reduced neutrophil apoptosis. Cathepsin D deficiency or lack of its translocation in the cytosol prolongs innate immune responses in experimental bacterial infection and in septic shock. Thus, we identified a new function of azurophilic granules that is in addition to their role in bacterial defense mechanisms: to regulate the life span of neutrophils and, therefore, the duration of innate immune responses through the release of cathepsin D

    Discordance in cathepsin B and cystatin C expressions in bronchoalveolar fluids between murine bleomycin-induced fibrosis and human idiopathic fibrosis

    Get PDF
    International audienceAbstractThe activity of cysteine cathepsin B increased markedly in lung homogenates and in bronchoalveolar lavage fluids (BALF) of the mouse model of bleomycin-induced lung fibrosis after 14 days of challenge. In contrast the level of the cysteine cathepsin inhibitor cystatin C was unaffected in BALF of wild-type and cathepsin B-deficient mice. Therefore, murine cystatin C is not a reliable marker of fibrosis during bleomycin-induced lung fibrosis. Current data are in sharp contrast to previous analysis carried on human BALF from patients with idiopathic pulmonary fibrosis, for which the level of cathepsin B remained unchanged while cystatin C was significantly increased

    Cathepsin E Deficiency Ameliorates Graft-versus-Host Disease and Modifies Dendritic Cell Motility

    Get PDF
    Microbial products influence immunity after allogeneic hematopoietic stem cell transplantation (allo-SCT). In this context, the role of cathepsin E (Ctse), an aspartate protease known to cleave bacterial peptides for antigen presentation in dendritic cells (DCs), has not been studied. During experimental acute graft-versus-host disease (GVHD), we found infiltration by Ctse-positive immune cells leading to higher Ctse RNA- and protein levels in target organs. In Ctse-deficient allo-SCT recipients, we found ameliorated GVHD, improved survival, and lower numbers of tissue-infiltrating DCs. Donor T cell proliferation was not different in Ctse-deficient vs. wild-type allo-SCT recipients in MHC-matched and MHC-mismatched models. Furthermore, Ctse- deficient DCs had an intact ability to induce allogeneic T cell proliferation, suggesting that its role in antigen presentation may not be the main mechanism how Ctse impacts GVHD. We found that Ctse deficiency significantly decreases DC motility in vivo, reduces adhesion to extracellular matrix (ECM), and diminishes invasion through ECM. We conclude that Ctse has a previously unrecognized role in regulating DC motility that possibly contributes to reduced DC counts and ameliorated inflammation in GVHD target organs of Ctse- deficient allo-SCT recipients. However, our data do not provide definite proof that the observed effect of Ctse−/− deficiency is exclusively mediated by DCs. A contribution of Ctse−/−-mediated functions in other recipient cell types, e.g., macrophages, cannot be excluded

    Asparaginyl endopeptidase (Legumain) supports human Th1 induction via cathepsin L-mediated intracellular C3 activation

    Get PDF
    Autocrine activation of the complement receptors C3aR and CD46 by complement activation components C3a and C3b produced through C3 cleavage by the protease cathepsin L (CTSL) during T cell stimulation is a requirement for IFN-γ production and Th1 induction in human CD4+ T cells. Thus, lack of autocrine CD46 activation, such as in CD46-deficient patients, is associated with defective Th1 responses and recurrent infections. We have identified LGMN [the gene coding for legumain, also known as asparaginyl endopeptidase (AEP)] as one of the key genes induced by CD46 co-stimulation during human CD4+ T cell activation. AEP processes and activates a range of proteins, among those α1-thymosin and CTSL, which both drive intrinsically Th1 activity—but has so far not been described to be functionally active in human T cells. Here we found that pharmacological inhibition of AEP during activation of human CD4+ T cells reduced CTSL activation and the CTSL-mediated generation of intracellular C3a. This translated into a specific reduction of IFN-γ production without affecting cell proliferation or survival. In line with these findings, CD4+ T cells isolated from Lgmn−/− mice also displayed a specific defect in IFN-γ secretion and Th1 induction. Furthermore, we did not observe a role for AEP-driven autocrine α1-thymosin activation in T cell-derived IFN-γ production. These data suggest that AEP is an “upstream” activator of the CTSL-C3-IFN-γ axis in human CD4+ T cells and hence an important supporter of human Th1 induction

    Combinatorial omics analysis reveals perturbed lysosomal homeostasis in collagen VII-deficient keratinocytes

    Get PDF
    The extracellular matrix protein collagen VII is part of the microenvironment of stratified epithelia and critical in organismal homeostasis. Mutations in the encoding gene COL7A1 lead to the skin disorder dystrophic epidermolysis bullosa (DEB), are linked to skin fragility and progressive inflammation-driven fibrosis that facilitates aggressive skin cancer. So far, these changes have been linked to mesenchymal alterations, the epithelial consequences of collagen VII loss remaining under- addressed. As epithelial dysfunction is a principal initiator of fibrosis, we performed a comprehensive transcriptome and proteome profiling of primary human keratinocytes to generate global and detailed images of dysregulated epidermal molecular pathways linked to loss of collagen VII. These revealed downregulation of interaction partners of collagen VII on mRNA and protein level, but also increased abundance of S100 pro- inflammatory proteins in primary DEB keratinocytes. Increased TGF-β signaling due to loss of collagen VII was associated with enhanced activity of lysosomal proteases in both keratinocytes and skin of collagen VII-deficient individuals. Thus, loss of a single structural protein, collagen VII, has extra- and intracellular consequences, resulting in inflammatory processes that enable tissue destabilization and promote keratinocyte- driven, progressive fibrosis

    A mechanistic target of rapamycin complex 1/2 (mTORC1)/V-Akt murine thymoma viral oncogene homolog 1 (AKT1)/cathepsin H axis controls filaggrin expression and processing in skin, a novel mechanism for skin barrier disruption in patients with atopic dermatitis

    Get PDF
    Background Filaggrin, which is encoded by the filaggrin gene (FLG), is an important component of the skin's barrier to the external environment, and genetic defects in FLG strongly associate with atopic dermatitis (AD). However, not all patients with AD have FLG mutations. Objective We hypothesized that these patients might possess other defects in filaggrin expression and processing contributing to barrier disruption and AD, and therefore we present novel therapeutic targets for this disease. Results We describe the relationship between the mechanistic target of rapamycin complex 1/2 protein subunit regulatory associated protein of the MTOR complex 1 (RAPTOR), the serine/threonine kinase V-Akt murine thymoma viral oncogene homolog 1 (AKT1), and the protease cathepsin H (CTSH), for which we establish a role in filaggrin expression and processing. Increased RAPTOR levels correlated with decreased filaggrin expression in patients with AD. In keratinocyte cell cultures RAPTOR upregulation or AKT1 short hairpin RNA knockdown reduced expression of the protease CTSH. Skin of CTSH-deficient mice and CTSH short hairpin RNA knockdown keratinocytes showed reduced filaggrin processing, and the mouse had both impaired skin barrier function and a mild proinflammatory phenotype. Conclusion Our findings highlight a novel and potentially treatable signaling axis controlling filaggrin expression and processing that is defective in patients with AD

    Profiling Trait Anxiety: Transcriptome Analysis Reveals Cathepsin B (Ctsb) as a Novel Candidate Gene for Emotionality in Mice

    Get PDF
    Behavioral endophenotypes are determined by a multitude of counteracting but precisely balanced molecular and physiological mechanisms. In this study, we aim to identify potential novel molecular targets that contribute to the multigenic trait “anxiety”. We used microarrays to investigate the gene expression profiles of different brain regions within the limbic system of mice which were selectively bred for either high (HAB) or low (LAB) anxiety-related behavior, and also show signs of comorbid depression-like behavior
    corecore