3 research outputs found

    In silico toxicology protocols

    Get PDF
    The present publication surveys several applications of in silico (i.e., computational) toxicology approaches across different industries and institutions. It highlights the need to develop standardized protocols when conducting toxicity-related predictions. This contribution articulates the information needed for protocols to support in silico predictions for major toxicological endpoints of concern (e.g., genetic toxicity, carcinogenicity, acute toxicity, reproductive toxicity, developmental toxicity) across several industries and regulatory bodies. Such novel in silico toxicology (IST) protocols, when fully developed and implemented, will ensure in silico toxicological assessments are performed and evaluated in a consistent, reproducible, and well-documented manner across industries and regulatory bodies to support wider uptake and acceptance of the approaches. The development of IST protocols is an initiative developed through a collaboration among an international consortium to reflect the state-of-the-art in in silico toxicology for hazard identification and characterization. A general outline for describing the development of such protocols is included and it is based on in silico predictions and/or available experimental data for a defined series of relevant toxicological effects or mechanisms. The publication presents a novel approach for determining the reliability of in silico predictions alongside experimental data. In addition, we discuss how to determine the level of confidence in the assessment based on the relevance and reliability of the information

    Polyethylene Glycol Exposure with Antihemophilic Factor (Recombinant), PEGylated (rurioctocog alfa pegol) and Other Therapies Indicated for the Pediatric Population: History and Safety

    No full text
    Polyethylene glycol (PEG) is an inert, water soluble polymer, used for decades in pharmaceuticals. Although PEG is considered safe, concerns persist about the potential adverse effects of long-term exposure to PEG-containing therapies, specifically in children, following the introduction of PEGylated recombinant factor products used for the treatment of hemophilia. Given the absence of long-term surveillance data, and to evaluate the potential risk, we estimated PEG exposure in the pediatric population receiving PEGylated therapies with pediatric indications administered intravenously or intramuscularly. We used a range of pediatric weights and doses based on prescribing information (PI) or treatment guidelines. PIs and reporting websites were searched for information about adverse events (AEs). For a child weighing 50 kg on the highest prophylactic dose of a FVIII product, the range of total PEG exposure was 40–21,840 mg/year; for factor IX (FIX) products, the range was 13–1342 mg/year; and for other products, the range was 383–26,743 mg/year, primarily as a derivative excipient. No AE patterns attributable to PEG were found for any of these products, including potential renal, neurological, or hepatic AEs. Our analyses suggest the pediatric population has had substantial exposure to PEG for several decades, with no evidence of adverse consequences
    corecore