1,202 research outputs found

    Diverse personalized recommendations with uncertainty from implicit preference data with the Bayesian Mallows Model

    Full text link
    Clicking data, which exists in abundance and contains objective user preference information, is widely used to produce personalized recommendations in web-based applications. Current popular recommendation algorithms, typically based on matrix factorizations, often have high accuracy and achieve good clickthrough rates. However, diversity of the recommended items, which can greatly enhance user experiences, is often overlooked. Moreover, most algorithms do not produce interpretable uncertainty quantifications of the recommendations. In this work, we propose the Bayesian Mallows for Clicking Data (BMCD) method, which augments clicking data into compatible full ranking vectors by enforcing all the clicked items to be top-ranked. User preferences are learned using a Mallows ranking model. Bayesian inference leads to interpretable uncertainties of each individual recommendation, and we also propose a method to make personalized recommendations based on such uncertainties. With a simulation study and a real life data example, we demonstrate that compared to state-of-the-art matrix factorization, BMCD makes personalized recommendations with similar accuracy, while achieving much higher level of diversity, and producing interpretable and actionable uncertainty estimation.Comment: 27 page

    Constructions for cyclic sieving phenomena

    Full text link
    We show how to derive new instances of the cyclic sieving phenomenon from old ones via elementary representation theory. Examples are given involving objects such as words, parking functions, finite fields, and graphs.Comment: 18 pages, typos fixed, to appear in SIAM J. Discrete Mat

    Fast genomic μChIP-chip from 1,000 cells

    Get PDF
    A new method for rapid genome-wide μChIP-chip from as few as 1,000 cells

    Conjugated polymer donor-molecular acceptor nanohybrids for photocatalytic hydrogen evolution.

    Get PDF
    A library of 237 organic binary/ternary nanohybrids consisting of conjugated polymers donors and either fullerene or non-fullerene molecular acceptors was prepared and screened for sacrificial photocatalytic hydrogen evolution activity. PCDTBT/PC60BM nanohybrid showed a high hydrogen evolution rate of 105.2 mmol g-1 h-1 under visible light (λ > 420 nm)

    Hot Electrons Regain Coherence in Semiconducting Nanowires

    Full text link
    The higher the energy of a particle is above equilibrium the faster it relaxes due to the growing phase-space of available electronic states it can interact with. In the relaxation process phase coherence is lost, thus limiting high energy quantum control and manipulation. In one-dimensional systems high relaxation rates are expected to destabilize electronic quasiparticles. We show here that the decoherence induced by relaxation of hot electrons in one-dimensional semiconducting nanowires evolves non-monotonically with energy such that above a certain threshold hot-electrons regain stability with increasing energy. We directly observe this phenomenon by visualizing for the first time the interference patterns of the quasi-one-dimensional electrons using scanning tunneling microscopy. We visualize both the phase coherence length of the one-dimensional electrons, as well as their phase coherence time, captured by crystallographic Fabry-Perot resonators. A remarkable agreement with a theoretical model reveals that the non-monotonic behavior is driven by the unique manner in which one dimensional hot-electrons interact with the cold electrons occupying the Fermi-sea. This newly discovered relaxation profile suggests a high-energy regime for operating quantum applications that necessitate extended coherence or long thermalization times, and may stabilize electronic quasiparticles in one dimension

    A critical survey of published physical planning principles

    Get PDF
    Thesis (M.C.P.) Massachusetts Institute of Technology. Dept. of Architecture, 1955.Bibliography: leaves [112]-122.by Thomas A. Reiner.M.C.P

    Histone H3 Lysine 27 Methylation Asymmetry on Developmentally-Regulated Promoters Distinguish the First Two Lineages in Mouse Preimplantation Embryos

    Get PDF
    First lineage specification in the mammalian embryo leads to formation of the inner cell mass (ICM) and trophectoderm (TE), which respectively give rise to embryonic and extraembryonic tissues. We show here that this first differentiation event is accompanied by asymmetric distribution of trimethylated histone H3 lysine 27 (H3K27me3) on promoters of signaling and developmentally-regulated genes in the mouse ICM and TE. A genome-wide survey of promoter occupancy by H3K4me3 and H3K27me3 indicates that both compartments harbor promoters enriched in either modification, and promoters co-enriched in trimethylated H3K4 and H3K27 linked to developmental and signaling functions. The majority of H3K4/K27me3 co-enriched promoters are distinct between the two lineages, primarily due to differences in the distribution of H3K27me3. Derivation of embryonic stem cells leads to significant losses and gains of H3K4/K27me3 co-enriched promoters relative to the ICM, with distinct contributions of (de)methylation events on K4 and K27. Our results show histone trimethylation asymmetry on promoters in the first two developmental lineages, and highlight an epigenetic skewing associated with embryonic stem cell derivation

    Metal-organic conjugated microporous polymer containing a carbon dioxide reduction electrocatalyst

    Get PDF
    A metal-organic conjugated micorporous polymer (CMP) containing a manganese carbonyl electrocatalyst for CO2 reduction has been synthesised and electrochemically characterised. Incorporation in a rigid framework changes the behavior of the catalyst, preventing reductive dimerization. These initial studies demonstrate the feasibility of CMP electrodes that can provide both high local CO2 concentrations and well defined electrocatalytic sites

    Mapping of oxidative stress responses of human tumor cells following photodynamic therapy using hexaminolevulinate

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Photodynamic therapy (PDT) involves systemic or topical administration of a lesion-localizing photosensitizer or its precursor, followed by irradiation of visible light to cause singlet oxygen-induced damage to the affected tissue. A number of mechanisms seem to be involved in the protective responses to PDT, including activation of transcription factors, heat shock proteins, antioxidant enzymes and apoptotic pathways.</p> <p>Results</p> <p>In this study, we address the effects of a destructive/lethal hexaminolevulinate (HAL) mediated PDT dose on the transcriptome by using transcriptional exon evidence oligo microarrays. Here, we confirm deviations in the steady state expression levels of previously identified early defence response genes and extend this to include unreported PDT inducible gene groups, most notably the metallothioneins and histones. HAL-PDT mediated stress also altered expression of genes encoded by mitochondrial DNA (mtDNA). Further, we report PDT stress induced alternative splicing. Specifically, the ATF3 alternative isoform (deltaZip2) was up-regulated, while the full-length variant was not changed by the treatment. Results were independently verified by two different technological microarray platforms. Good microarray, RT-PCR and Western immunoblotting correlation for selected genes support these findings.</p> <p>Conclusion</p> <p>Here, we report new insights into how destructive/lethal PDT alters the transcriptome not only at the transcriptional level but also at post-transcriptional level via alternative splicing.</p

    Chromosome-wide identification of novel imprinted genes using microarrays and uniparental disomies

    Get PDF
    Genomic imprinting refers to a specialized form of epigenetic gene regulation whereby the expression of a given allele is dictated by parental origin. Defining the extent and distribution of imprinting across genomes will be crucial for understanding the roles played by imprinting in normal mammalian growth and development. Using mice carrying uniparental disomies or duplications, microarray screening and stringent bioinformatics, we have developed the first large-scale tissue-specific screen for imprinted gene detection. We quantify the stringency of our methodology and relate it to previous non-tissue-specific large-scale studies. We report the identification in mouse of four brain-specific novel paternally expressed transcripts and an additional three genes that show maternal expression in the placenta. The regions of conserved linkage in the human genome are associated with the Prader–Willi Syndrome (PWS) and Beckwith–Wiedemann Syndrome (BWS) where imprinting is known to be a contributing factor. We conclude that large-scale systematic analyses of this genre are necessary for the full impact of genomic imprinting on mammalian gene expression and phenotype to be elucidated
    • …
    corecore