123 research outputs found

    The surface energy balance during foehn events at Joyce Glacier, McMurdo Dry Valleys, Antarctica

    Get PDF
    The McMurdo Dry Valleys (MDV) are a polar desert, where glacial melt is the main source of water to streams and the ecosystem. Summer air temperatures are typically close to zero, and therefore foehn events can have a large impact on the meltwater production. A 14-month record of automatic weather station (AWS) data on Joyce Glacier is used to force a 1D surface energy balance model to study the impact of foehn events on the energy balance. AWS data and output of the Antarctic Mesoscale Prediction System (AMPS) on a 1.7 km grid are used to detect foehn events at the AWS site. Foehn events at Joyce Glacier occur under the presence of cyclones over the Ross Sea. The location of Joyce Glacier on the leeward side of the Royal Society Range during these synoptic events causes foehn warming through isentropic drawdown. This mechanism differs from the foehn warming through gap flow that was earlier found for other regions in the MDV and highlights the complex interaction of synoptic flow with local topography of the MDV. Shortwave radiation is the primary control on melt at Joyce Glacier, and melt often occurs with subzero air temperatures. During foehn events, melt rates are enhanced, contributing to 23 % of the total annual melt. Foehn winds cause a switch from a diurnal stability regime in the atmospheric surface layer to a continuous energy input from sensible heat flux throughout the day. The sensible heating during foehn, through an increase in turbulent mixing resulting from gustier and warmer wind conditions, is largely compensated for by extra heat losses through sublimation. Melt rates are enhanced through an additional energy surplus from a reduced albedo during foehn.</p

    Changing distributions of sea ice melt and meteoric water west of the Antarctic Peninsula

    Get PDF
    The Western Antarctic Peninsula has recently undergone rapid climatic warming, with associated decreases in sea ice extent and duration, and increases in precipitation and glacial discharge to the ocean. These shifts in the freshwater budget can have significant consequences on the functioning of the regional ecosystem, feedbacks on regional climate, and sea-level rise. Here we use shelf-wide oxygen isotope data from cruises in four consecutive Januaries (2011–2014) to distinguish the freshwater input from sea ice melt separately from that due to meteoric sources (precipitation plus glacial discharge). Sea ice melt distributions varied from minima in 2011 of around 0 % up to maxima in 2014 of around 4–5%. Meteoric water contribution to the marine environment is typically elevated inshore, due to local glacial discharge and orographic effects on precipitation, but this enhanced contribution was largely absent in January 2013 due to anomalously low precipitation in the last quarter of 2012. Both sea ice melt and meteoric water changes are seen to be strongly influenced by changes in regional wind forcing associated with the Southern Annular Mode and the El Niño–Southern Oscillation phenomenon, which also impact on net sea ice motion as inferred from the isotope data. A near-coastal time series of isotope data collected from Rothera Research Station reproduces well the temporal pattern of changes in sea ice melt, but less well the meteoric water changes, due to local glacial inputs and precipitation effects

    Greenland Ice Sheet late-season melt: investigating multi-scale drivers of K-transect events

    Get PDF
    One consequence of recent Arctic warming is an increased occurrence and longer seasonality of above-freezing air temperature episodes.There is significant disagreement in the literature concerning potential physical connectivity between high-latitude open water duration proximate to the Greenland Ice Sheet (GrIS) and unseasonal (i.e. late summer and autumn) GrIS melt events. Here, a new date of sea ice advance (DOA) product is used to determine the occurrence of Baffin Bay sea ice growth along Greenland’s west coast for the 2011–2015 period. For the unseasonal melt period preceding the DOA, northwest Atlantic Ocean and atmospheric conditions are analyzed and linked to unseasonal melt events observed at a series of on-ice automatic weather stations (AWS) along the K-transect in southwest Greenland. Mesoscale and synoptic influences on the above and below freezing surface air temperature events are assessed through analyses of AWS wind, pressure, and humidity observations. These surface observations are further compared against Modèle Atmosphérique Régional (MAR), Regional Atmospheric Climate Model (RACMO2), and ERA-Interim reanalysis fields to understand the airmass origins and (thermo)dynamic drivers of the melt events. Results suggest that the K-transect late season, ablation zone melt events are strongly affected by ridging atmospheric circulation patterns that transport warm, moist air from the sub-polar North Atlantic toward west Greenland. While thermal conduction and advection off south Baffin Bayopen waters impact coastal air temperatures, consistent with previous studies, marine air incursions from Baffin Bay onto the ice sheet are obstructed by barrier flows and the pressure gradient-driven katabatic regime along the western GrIS margin

    Oceanographic Controls on the Variability of Ice-Shelf Basal Melting and Circulation of Glacial Meltwater in the Amundsen Sea Embayment, Antarctica

    Get PDF
    Ice shelves in the Amundsen Sea Embayment have thinned, accelerating the seaward flow of ice sheets upstream over recent decades. This imbalance is caused by an increase in the ocean-driven melting of the ice shelves. Observations and models show that the ocean heat content reaching the ice shelves is sensitive to the depth of thermocline, which separates the cool, fresh surface waters from warm, salty waters. Yet the processes controlling the variability of thermocline depth remain poorly constrained. Here we quantify the oceanic conditions and ocean-driven melting of Cosgrove, Pine Island Glacier (PIG), Thwaites, Crosson, and Dotson ice shelves in the Amundsen Sea Embayment from 1991 to 2014 using a general circulation model. Ice-shelf melting is coupled to variability in the wind field and the sea-ice motions over the continental shelf break and associated onshore advection of warm waters in deep troughs. The layer of warm, salty waters at the calving front of PIG and Thwaites is thicker in austral spring (June–October) than in austral summer (December–March), whereas the seasonal cycle at the calving front of Dotson is reversed. Furthermore, the ocean-driven melting in PIG is enhanced by an asymmetric response to changes in ocean heat transport anomalies at the continental shelf break: melting responds more rapidly to increases in ocean heat transport than to decreases. This asymmetry is caused by the inland deepening of bathymetry and the glacial meltwater circulation around the ice shelf

    Cloud forcing of surface energy balance from in situ measurements in diverse mountain glacier environments

    Get PDF
    Clouds are an important component of the climate system, yet our understanding of how they directly and indirectly affect glacier melt in different climates is incomplete. Here we analyse high-quality datasets from 16 mountain glaciers in diverse climates around the globe to better understand how relationships between clouds and near-surface meteorology, radiation and surface energy balance vary. The seasonal cycle of cloud frequency varies markedly between mountain glacier sites. During the main melt season at each site, an increase in cloud cover is associated with increased vapour pressure and relative humidity, but relationships to wind speed are site specific. At colder sites (average near-surface air temperature in the melt season <0gg C), air temperature generally increases with increasing cloudiness, while for warmer sites (average near-surface air temperature in the melt season ≫0gg C), air temperature decreases with increasing cloudiness. At all sites, surface melt is more frequent in cloudy compared to clear-sky conditions. The proportion of melt from temperature-dependent energy fluxes (incoming longwave radiation, turbulent sensible heat and latent heat) also universally increases in cloudy conditions. However, cloud cover does not affect daily total melt in a universal way, with some sites showing increased melt energy during cloudy conditions and others decreased melt energy. The complex association of clouds with melt energy is not amenable to simple relationships due to many interacting physical processes (direct radiative forcing; surface albedo; and co-variance with temperature, humidity and wind) but is most closely related to the effect of clouds on net radiation. These results motivate the use of physics-based surface energy balance models for representing glacier-climate relationships in regional- and global-scale assessments of glacier response to climate change

    Cloud forcing of surface energy balance from in situ measurements in diverse mountain glacier environments

    Get PDF
    Clouds are an important component of the climate system, yet our understanding of how they directly and indirectly affect glacier melt in different climates is incomplete. Here we analyse high-quality datasets from 16 mountain glaciers in diverse climates around the globe to better understand how relationships between clouds and near-surface meteorology, radiation and surface energy balance vary. The seasonal cycle of cloud frequency varies markedly between mountain glacier sites. During the main melt season at each site, an increase in cloud cover is associated with increased vapour pressure and relative humidity, but relationships to wind speed are site specific. At colder sites (average near-surface air temperature in the melt season <0° C), air temperature generally increases with increasing cloudiness, while for warmer sites (average near-surface air temperature in the melt season ≫0° C), air temperature decreases with increasing cloudiness. At all sites, surface melt is more frequent in cloudy compared to clear-sky conditions. The proportion of melt from temperature-dependent energy fluxes (incoming longwave radiation, turbulent sensible heat and latent heat) also universally increases in cloudy conditions. However, cloud cover does not affect daily total melt in a universal way, with some sites showing increased melt energy during cloudy conditions and others decreased melt energy. The complex association of clouds with melt energy is not amenable to simple relationships due to many interacting physical processes (direct radiative forcing; surface albedo; and co-variance with temperature, humidity and wind) but is most closely related to the effect of clouds on net radiation. These results motivate the use of physics-based surface energy balance models for representing glacier-climate relationships in regional- and global-scale assessments of glacier response to climate change

    Characteristics of surface “melt potential” over Antarctic ice shelves based on regional atmospheric model simulations of summer air temperature extremes from 1979/80 to 2018/19

    Get PDF
    We calculate a regional surface “melt potential” index (MPI) over Antarctic ice shelves that describes the frequency (MPI-freq, %) and intensity (MPI-int, K) of daily maximum summer temperatures exceeding a melt threshold of 273.15 K. This is used to determine which ice shelves are vulnerable to melt-induced hydrofracture and is calculated using near-surface temperature output for each summer from 1979/80 to 2018/19 from two high-resolution regional atmospheric model hindcasts (using the MetUM and HIRHAM5). MPI is highest for Antarctic Peninsula ice shelves (MPI-freq 23-35%, MPI-int 1.2-2.1 K), lowest (2-3%, < 0 K) for Ronne-Filchner and Ross ice shelves, and around 10-24% and 0.6-1.7 K for the other West and East Antarctic ice shelves. Hotspots of MPI are apparent over many ice shelves, and they also show a decreasing trend in MPI-freq. The regional circulation patterns associated with high MPI values over West and East Antarctic ice shelves are remarkably consistent for their respective region but tied to different large-scale climate forcings. The West Antarctic circulation resembles the central Pacific El Niño pattern with a stationary Rossby wave and a strong anticyclone over the high-latitude South Pacific. By contrast, the East Antarctic circulation comprises a zonally symmetric negative Southern Annular Mode pattern with a strong regional anticyclone on the plateau and enhanced coastal easterlies/weakened Southern Ocean westerlies. Values of MPI are 3-4 times larger for a lower temperature/melt threshold of 271.15 K used in a sensitivity test, as melting can occur at temperatures lower than 273.15 K depending on snowpack properties
    • …
    corecore