21 research outputs found

    Sublayer- and cell-type-specific neurodegenerative transcriptional trajectories in hippocampal sclerosis

    Get PDF
    Altres ajuts: Fundación Tatiana Pérez de Guzman el Bueno; SynCogDis Network (SAF2014-52624-REDT, SAF2017-90664-REDT); Human Frontiers Science Program (HFSP RGP0022/2013); Fondo Europeo de Desarrollo Regional (FEDER).Hippocampal sclerosis, the major neuropathological hallmark of temporal lobe epilepsy, is characterized by different patterns of neuronal loss. The mechanisms of cell-type-specific vulnerability and their progression and histopathological classification remain controversial. Using single-cell electrophysiology in vivo and immediate-early gene expression, we reveal that superficial CA1 pyramidal neurons are overactive in epileptic rodents. Bulk tissue and single-nucleus expression profiling disclose sublayer-specific transcriptomic signatures and robust microglial pro-inflammatory responses. Transcripts regulating neuronal processes such as voltage channels, synaptic signaling, and cell adhesion are deregulated differently by epilepsy across sublayers, whereas neurodegenerative signatures primarily involve superficial cells. Pseudotime analysis of gene expression in single nuclei and in situ validation reveal separated trajectories from health to epilepsy across cell types and identify a subset of superficial cells undergoing a later stage in neurodegeneration. Our findings indicate that sublayer- and cell-type-specific changes associated with selective CA1 neuronal damage contribute to progression of hippocampal sclerosis

    Sublayer- and cell-type-specific neurodegenerative transcriptional trajectories in hippocampal sclerosis

    Get PDF
    Hippocampal sclerosis, the major neuropathological hallmark of temporal lobe epilepsy, is characterized by different patterns of neuronal loss. The mechanisms of cell-type-specific vulnerability and their progression and histopathological classification remain controversial. Using single-cell electrophysiology in vivo and immediate-early gene expression, we reveal that superficial CA1 pyramidal neurons are overactive in epileptic rodents. Bulk tissue and single-nucleus expression profiling disclose sublayer-specific transcriptomic signatures and robust microglial pro-inflammatory responses. Transcripts regulating neuronal processes such as voltage channels, synaptic signaling, and cell adhesion are deregulated differently by epilepsy across sublayers, whereas neurodegenerative signatures primarily involve superficial cells. Pseudotime analysis of gene expression in single nuclei and in situ validation reveal separated trajectories from health to epilepsy across cell types and identify a subset of superficial cells undergoing a later stage in neurodegeneration. Our findings indicate that sublayer- and cell-type-specific changes associated with selective CA1 neuronal damage contribute to progression of hippocampal sclerosis.This work was supported by grants from MICINN (RTI2018-098581-B-I00 to L.M.P.), Fundación Tatiana Pérez de Guzman el Bueno, and the SynCogDis Network (SAF2014-52624-REDT and SAF2017- 90664-REDT to L.M.P. and A. Bayes). Collaboration between L.M.d.l.P. and Y.H. was supported by Human Frontiers Science Program (HFSP) grant RGP0022/2013. J.P.L.-A. was supported by grants from MICIU co-financed by ERDF (RYC-2015-18056 and RTI2018-102260-B-I00) and Severo Ochoa grant SEV-2017-0723. R.R.-V. and A. Bayes were supported by MINECO BFU2015-69717-P and RTI2018-097037-B-100 and a Marie Curie career integration grant (ref. 304111). A.V.M. was supported by MICINN (SAF2017- 85717-R) and Fundación Alicia Koplowitz. A. Barco was supported by grants SAF2017-87928-R from MICINN co-financed by ERDF and RGP0039/2017 from the Human Frontiers Science Program Organization. The Instituto de Neurociencias is a ‘‘Centre of Excellence Severo Ochoa.’’ D.G.-D. and C.M.N. hold PhD fellowships from MICINN (BES-2013-064171 and BES2016-076281, respectively).Peer reviewe

    Parental breeding age effects on descendants' longevity interact over 2 generations in matrilines and patrilines

    Get PDF
    Individuals within populations vary enormously in mortality risk and longevity, but the causes of this variation remain poorly understood. A potentially important and phylogenetically widespread source of such variation is maternal age at breeding, which typically has negative effects on offspring longevity. Here, we show that paternal age can affect offspring longevity as strongly as maternal age does and that breeding age effects can interact over 2 generations in both matrilines and patrilines. We manipulated maternal and paternal ages at breeding over 2 generations in the neriid fly Telostylinus angusticollis. To determine whether breeding age effects can be modulated by the environment, we also manipulated larval diet and male competitive environment in the first generation. We found separate and interactive effects of parental and grand-parental ages at breeding on descendants' mortality rate and life span in both matrilines and patrilines. These breeding age effects were not modulated by grand-parental larval diet quality or competitive environment. Our findings suggest that variation in maternal and paternal ages at breeding could contribute substantially to intrapopulation variation in mortality and longevity

    Synaptic proteomics as a means to identify the molecular basis of mental illness : Are we getting there?

    Get PDF
    Synapses are centrally involved in many brain disorders, particularly in psychiatric and neurodevelopmental ones. However, our current understanding of the proteomic alterations affecting synaptic performance in the majority of mental illnesses is limited. As a result, novel pharmacotherapies with improved neurological efficacy have been scarce over the past decades. The main goal of synaptic proteomics in the context of mental illnesses is to identify dysregulated molecular mechanisms underlying these conditions. Here we reviewed and performed a meta-analysis of previous neuroproteomic research to identify proteins that may be consistently dysregulated in one or several mental disorders. Notably, we found very few proteins reproducibly altered among independent experiments for any given condition or between conditions, indicating that we are still far from identifying key pathophysiological mechanisms of mental illness. We suggest that future research in the field will require higher levels of standardization and larger-scale experiments to address the challenge posed by biological and methodological variability. We strongly believe that more resources should be placed in this field as the need to identify the molecular roots of mental illnesses is highly pressing

    Telomeric Repeat-Containing RNA (TERRA) and Telomerase Are Components of Telomeres During Mammalian Gametogenesis.

    No full text
    Telomeres are ribonucleoprotein structures at the end of chromosomes composed of telomeric DNA, specific-binding proteins and noncoding RNA (TERRA). Despite their importance in preventing chromosome instability, little is known about the crosstalk between these three elements during the formation of the germ line. Here, we provide evidence that both TERRA and the telomerase enzymatic subunit (TERT) are components of telomeres in mammalian germ cells. We found that TERRA co-localizes with telomeres during mammalian meiosis and that its expression progressively increases during spermatogenesis, until the beginning of spermiogenesis. While both TERRA levels and distribution would be regulated in a gender-specific manner, telomere-TERT co-localization appears to be regulated based on species-specific characteristics of the telomeric structure. Moreover, we found that TERT localization at telomeres is maintained all through spermatogenesis as a structural component without affecting telomere elongation. Our results represent the first evidences of co-localization between telomerase and telomeres during mammalian gametogenesis

    Telomeric repeat-containing RNA and telomerase in human fetal oocytes.

    No full text
    STUDY QUESTION: What is the distribution of telomeric repeat-containing RNA (TERRA) and of telomerase in human fetal oocytes? SUMMARY ANSWER: TERRA forms discrete foci at telomeres of human fetal oocytes and it co-localizes with both the shelterin component telomeric repeat-binding factor 2 (TRF2) and the catalytic subunit of human telomerase at the telomeres of meiotic chromosomes. WHAT IS KNOWN ALREADY: TERRA is a structural element of the telomeric chromatin that has been described in somatic cells of many different eukaryote species. The telomerase enzyme is inactive in adult somatic cells but is active in germ cells, stem cells and in the majority of tumors; however, its distribution in oocytes is still unknown. STUDY DESIGN, SIZE, DURATION: For this study, ovarian samples from four euploid fetuses of 22 gestational weeks were used. These samples were obtained with the consent of the parents and of the Ethics Committee of Hospital de la Vall d'Hebron. PARTICIPANTS/MATERIALS, SETTING, METHODS: We analyzed the distribution of TERRA and telomerase in cells derived from human fetal ovaries. The co-localization of TERRA, telomerase and telomeres was performed by optimizing a combination of immunofluorescence (IF) and RNA-fluorescent in situ hybridization (RNA-FISH) techniques. The synaptonemal complex protein 3 (SYCP3), TRF2 and protein component of telomerase [telomerase reverse transcriptase (TERT)] were detected by IF, whereas TERRA was revealed by RNA-FISH using a (CCCTAA)(3) oligonucleotide. SYCP3 signals allowed us to identify oocytes that had entered meiosis and classify them into the different stages of prophase I, whereas TRF2 indicated the telomeric regions of chromosomes. MAIN RESULTS AND THE ROLE OF CHANCE: We show for the first time the presence of TERRA and the intracellular distribution of telomerase in human fetal ovarian cells. TERRA is present, forming discrete foci, in 75% of the ovarian tissue cells and most of TERRA molecules (≈ 83%) are at telomeres (TRF2 co-localization). TERRA levels are higher in oocytes than in ovarian tissue cells (P = 0.00), and do not change along the progression of the prophase I stage (P = 0.37). TERRA is present on ≈ 23% of the telomeres in all cell types derived from human fetal ovaries. Moreover, ≈ 22% of TERRA foci co-localize with the protein component of telomerase (TERT). LIMITATIONS, REASONS FOR CAUTION: We present a descriptive/qualitative study of TERRA in human fetal ovarian tissue. Given the difficult access and manipulation of fetal samples, the number of fetal ovaries used in this study was limited. WIDER IMPLICATIONS OF THE FINDINGS: This is the first report on TERRA expression in oocytes from human fetal ovaries. The presence of TERRA at the telomeres of oocytes from the leptotene to pachytene stages and its co-localization with the telomerase protein component suggests that this RNA might participate in the maintenance of the telomere structure, at least through the processes that take place during the female meiotic prophase I. Since telomeres in oocytes have been mainly studied regarding the bouquet structure, our results introduce a new viewpoint of the telomeric structure during meiosis

    Metazoan evolution of glutamate receptors reveals unreported phylogenetic groups and divergent lineage-specific events

    Get PDF
    Glutamate receptors are divided in two unrelated families: ionotropic (iGluR), driving synaptic transmission, and metabotropic (mGluR), which modulate synaptic strength. The present classification of GluRs is based on vertebrate proteins and has remained unchanged for over two decades. Here we report an exhaustive phylogenetic study of GluRs in metazoans. Importantly, we demonstrate that GluRs have followed different evolutionary histories in separated animal lineages. Our analysis reveals that the present organization of iGluRs into six classes does not capture the full complexity of their evolution. Instead, we propose an organization into four subfamilies and ten classes, four of which have never been previously described. Furthermore, we report a sister class to mGluR classes I-III, class IV. We show that many unreported proteins are expressed in the nervous system, and that new Epsilon receptors form functional ligand-gated ion channels. We propose an updated classification of glutamate receptors that includes our findings. Nerve cells or neurons communicate with each other by releasing specific molecules in the gap between them, the synapses. The sending neuron passes on messages through packets of chemicals called neurotransmitters, which are picked up by the receiving cell with the help of receptors on its surface. Neurons use different neurotransmitters to send different messages, but one of the most common ones is glutamate. There are two families of glutamate receptors: ionotropic receptors, which can open or close ion channels in response to neurotransmitters and control the transmission of a signal, and metabotropic receptors, which are linked to a specific protein and control the strength of signal. Our understanding of these two receptor families comes from animals with backbones, known as vertebrates. But the receptors themselves are ancient. We can trace the first family back as far as bacteria and the second back to single-celled organisms like amoebas. Vertebrates have six classes of ionotropic and three classes of metabotropic glutamate receptor. But other multi-celled animals also have these receptors, so this picture may not be complete. Here, Ramos-Vicente et al. mapped all major lineages of animals to reveal the evolutionary history of these receptors to find out if the receptor families became more complicated as brain power increased. The results showed that the glutamate receptors found in vertebrates are only a fraction of all the types that exist. In fact, before present-day animal groups emerged, the part of the genome that holds the ionotropic receptor genes duplicated three times. This formed four receptor subfamilies, and our ancestors had all of them. Across the animal kingdom, there are ten, not six, classes of ionotropic receptors and there is an extra class of metabotropic receptors. But only two subfamilies of ionotropic and three out of four metabotropic receptor classes are still present in vertebrates today. The current classification of glutamate receptors centers around vertebrates, ignoring other animals. But this new data could change that. A better knowledge of these new receptors could aid neuroscientists in better understanding the nervous system. And, using this technique to study other families of proteins could reveal more missing links in evolution
    corecore