27,892 research outputs found

    Manifold dimension of a causal set: Tests in conformally flat spacetimes

    Full text link
    This paper describes an approach that uses flat-spacetime dimension estimators to estimate the manifold dimension of causal sets that can be faithfully embedded into curved spacetimes. The approach is invariant under coarse graining and can be implemented independently of any specific curved spacetime. Results are given based on causal sets generated by random sprinklings into conformally flat spacetimes in 2, 3, and 4 dimensions, as well as one generated by a percolation dynamics.Comment: 8 pages, 8 figure

    Criteria for generalized macroscopic and mesoscopic quantum coherence

    Get PDF
    We consider macroscopic, mesoscopic and "S-scopic" quantum superpositions of eigenstates of an observable, and develop some signatures for their existence. We define the extent, or size SS of a superposition, with respect to an observable \hat{x}, as being the range of outcomes of \hat{x} predicted by that superposition. Such superpositions are referred to as generalized SS-scopic superpositions to distinguish them from the extreme superpositions that superpose only the two states that have a difference SS in their prediction for the observable. We also consider generalized SS-scopic superpositions of coherent states. We explore the constraints that are placed on the statistics if we suppose a system to be described by mixtures of superpositions that are restricted in size. In this way we arrive at experimental criteria that are sufficient to deduce the existence of a generalized SS-scopic superposition. The signatures developed are useful where one is able to demonstrate a degree of squeezing. We also discuss how the signatures enable a new type of Einstein-Podolsky-Rosen gedanken experiment.Comment: 15 pages, accepted for publication in Phys. Rev.

    Bell inequalities for continuous-variable correlations

    Get PDF
    We derive a new class of correlation Bell-type inequalities. The inequalities are valid for any number of outcomes of two observables per each of n parties, including continuous and unbounded observables. We show that there are no first-moment correlation Bell inequalities for that scenario, but such inequalities can be found if one considers at least second moments. The derivation stems from a simple variance inequality by setting local commutators to zero. We show that above a constant detector efficiency threshold, the continuous variable Bell violation can survive even in the macroscopic limit of large n. This method can be used to derive other well-known Bell inequalities, shedding new light on the importance of non-commutativity for violations of local realism.Comment: 4 pages, 1 figure. v2: New results on detector efficiencies and macroscopic limit, new co-author, changed title and abstract, changed figure, added journal reference and DO

    Spin entanglement, decoherence and Bohm's EPR paradox

    Get PDF
    We obtain criteria for entanglement and the EPR paradox for spin-entangled particles and analyse the effects of decoherence caused by absorption and state purity errors. For a two qubit photonic state, entanglement can occur for all transmission efficiencies. In this case, the state preparation purity must be above a threshold value. However, Bohm’s spin EPR paradox can be achieved only above a critical level of loss. We calculate a required efficiency of 58%, which appears achievable with current quantum optical technologies. For a macroscopic number of particles prepared in a correlated state, spin entanglement and the EPR paradox can be demonstrated using our criteria for efficiencies η > 1/3 and η > 2/3 respectively. This indicates a surprising insensitivity to loss decoherence, in a macroscopic system of ultra-cold atoms or photons

    Lie discrete symmetries of lattice equations

    Full text link
    We extend two of the methods previously introduced to find discrete symmetries of differential equations to the case of difference and differential-difference equations. As an example of the application of the methods, we construct the discrete symmetries of the discrete Painlev\'e I equation and of the Toda lattice equation

    Effects of reset stators and a rotating, grooved stator hub on performance of a 1.92-pressure-ratio compressor stage

    Get PDF
    The overall performance and blade-element performance of a transonic fan stage are presented for two modified test configurations and are compared with the unmodified stage. Tests were conducted with reset stators 2 deg open and reset stators with a rotating grooved stator hub. Detailed radial and circumferential (behind stator) surveys of the flow conditions were made over the stable operating range at rotative speeds of 70, 90, and 100 percent of design speed. Reset stator blade tests indicated a small increase in stage efficiency, pressure ratio, and maximum weight flow at each speed. Performance with reset stators and a rotating, grooved stator hub resulted in an additional increase in stage efficiency and pressure ratio at all speeds. The rotating grooved stator hub reduced hub losses considerably

    Experimental criteria for steering and the Einstein-Podolsky-Rosen paradox

    Get PDF
    We formally link the concept of steering (a concept created by Schrodinger but only recently formalised by Wiseman, Jones and Doherty [Phys. Rev. Lett. 98, 140402 (2007)] and the criteria for demonstrations of Einstein-Podolsky-Rosen (EPR) paradox introduced by Reid [Phys. Rev. A, 40, 913 (1989)]. We develop a general theory of experimental EPR-steering criteria, derive a number of criteria applicable to discrete as well as continuous-variables observables, and study their efficacy in detecting that form of nonlocality in some classes of quantum states. We show that previous versions of EPR-type criteria can be rederived within this formalism, thus unifying these efforts from a modern quantum-information perspective and clarifying their conceptual and formal origin. The theory follows in close analogy with criteria for other forms of quantum nonlocality (Bell-nonlocality, entanglement), and because it is a hybrid of those two, it may lead to insights into the relationship between the different forms of nonlocality and the criteria that are able to detect them.Comment: Changed title, updated references, minor corrections, added journal-ref and DO

    Violations of Bell Inequalities for Measurements with Macroscopic Uncertainties: What does it Mean to Violate Macroscopic Local Realism?

    Get PDF
    We suggest to test the premise of ``macroscopic local realism'' which is sufficient to derive Bell inequalities when measurements of photon number are only accurate to an uncertainty of order nn photons, where nn is macroscopic. Macroscopic local realism is only sufficient to imply, in the context of the original Einstein-Podolsky-Rosen argument, fuzzy ``elements of reality'' which have a macroscopic indeterminacy. We show therefore how the violation of local realism in the presence of macroscopic uncertainties implies the failure of ``macroscopic local realism''. Quantum states violating this macroscopic local realism are presented.Comment: 28 pages, 5 figures- new version is unchanged but tightened-20 pages, 5 figure
    • …
    corecore