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Violations of Bell inequalities for measurements with macroscopic uncertainties: What it means to
violate macroscopic local realism
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We suggest a method to test the premise of “macroscopic local realism” that is sufficient to derive Bell
inequalities when measurements of photon numbers are only accurate to an uncertainty of girdems,
wheren is macroscopic. Macroscopic local realism is only sufficient to imply, in the context of the original
Einstein-Podolsky-Rosen argument, fuzzy “elements of reality” that have a macroscopic indeterminacy. We
show therefore how the violation of local realism in the presence of macroscopic uncertainties implies the
failure of macroscopic local realism. Quantum states violating this macroscopic local realism are presented.

PACS numbegps): 03.65.Bz

I. INTRODUCTION much discussed. Leggett and G4ld] have shown the in-
compatibility of such macroscopic quantum states with the
There is increasing evidence for the failure of “local re- combined premises of “macroscopic realism” and “macro-
alism” as defined originally by Einstein, Podolsky, and Scopic noninvasive measurability.” They, however, consid-
Rosen[1], Bohm[2], and Bell[3,4]. For certain correlated €red macroscopic quantum superposition states at a single
quantum systems, Einstein, Podolsky, and Rosen argued thi@¢cation only, and did not introduce the premise of locality.
local realism is sufficient to imply that the results of mea- 1here has been much interest and debate over whether or
surements are predetermined. These predetermined “hidddlpt “Schradinger cat” states can truly exist. The existence,
variables” (called “elements of reality” by Einstein, Podol- ff)r which there IS now experimental evidenfl-13, of
sky, and Rosenexist to describe the value of a physical Schrodinger cat” states would appear to be closely linked

quantity, whether or not the measurement is performed, antf the question of the validity of chal realism at the more
macroscopic level we have described. One would suspect

as such are not part of a quantum description. Bell Iate{ N . S ; .
showed that the predictions of quantum mechanics for cer-ha? a violation of local _reghsm, which s evident in an ex-
S . . eriment where uncertainties are large, would be due more to
ta_un ideal quantum stgtes could not be compatible with suc ntangled macroscopic superpositions than microsuperposi-
hidden variable theories. tions.
It is now widely accepte_d therefore, as a resglt of Bell's " |, this paper, we begifin Sec. 1) by defining the physi-
theorem and related experimeis, that local realism must 5| premise of “macroscopic local realisn14] so as to
be rejected. However, the rejection of local realism |mp||6didentify the peculiar features of the macroscopically en-
by these results is at the most microscopic level of a singlgangled quantum states in a way that is independent of the
photon, in the sense that the hidden varialftes‘elements  quantum formulation. Macroscopic local realism is only suf-
of reality”) and the experimental results of measurementsicient to assign, to a system, predetermined elements of re-
involved must be defined to the precision of one photon oality (or hidden variablesthat are intrinsically macroscopic,
better in order to prove local realism invalid. The failure of in that they have a macroscopic indeterminacy in their val-
local realism in microscopic systems has long been associses.
ated with the existence of entangled quantum superposition Suppose our “Schdinger’s cat” is correlated with a sec-
states. In microscopic systems there can only be superposind system spatially separated from the cat, for example, a
tions of states microscopically distinct. gun used to kill the cat. Let us suppose a gun that has been
Little is known about the validity of local realism in more fired implies a dead cat; a gun that has not been fired implies
“macroscopic experiments,” where experimental uncertain-a cat that is alive. We can predict the result for a measure-
ties are largetbecoming macroscopidn size, in an absolute ment of the caiwhether dead or aliye without disturbing
sense. At least there has to our knowledge been no formuldhe cat, by a measurement of the gun. Macroscopic local
tion of a Bell-type theorem or a related experimental investealism is the premise used to imply the existence of an
tigation for such a situation. Previous worf&—8] sugges- element of reality for the cat. The element of reality in this
tive of incompatibilities of local realism in macroscopic case is a variable that assumes one of two values: one value
systems have considered the case where the measuremetdsresponding to the “dead” state and the other value cor-
are performed with perfect accuracy and are thus not exresponding to the “alive” state. The assignment of this ele-
amples of macroscopic experiments as we have defined thement of reality then means that the cat is always either
here. “dead” or “alive,” regardless of whether or not it is being
Generally, it is thought that true macroscopic quantumobserved or measured. Macroscopic local realism is used in
effects come about from the quantum superpositions of statedhis case because the two possible results of measurement of
that are macroscopically distinguishadl@,10], often re- the cat, “alive” and “dead,” are macroscopically distinct.
ferred to as “Schrdinger cat” states. This point has been To summarize, the rejection of macroscopic local realism in
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this example means that we cannot think of the cat as beindefined above, for “local realism” it is sufficient to imply
either dead or alive, even though we can predict the “dead’that if one can predict the result of a measuremer, aty
or “alive” result of ‘fmeasuring” the cat, Wi'FhOUt disturbing making a simultaneous measuremenBathen the result of
the cat, by measuring th_e correlated spatially sepqrated sehe measurement @ is a predetermined property of the
ond system, which in this case is the gun. The rejection okystemA. In the case of perfect correlation and perfect mea-
macroscopic local realism is a more startling result than, andyrements, the predetermined valtiee element of reality
by Bell's theorem. o we can determine it precisely by measurementsBomnd

. In Sec. Il we point out that _for S|tu.at|'ons.where the pos-pecause all orders of change to systanas a result of the
S|blletresults are {ar:l m?croscoplca_llly dlfstlngwshabk_a, \INe nlee heasurement & are excluded by locality.
only to assume ine strong premise of macroscopic focai re Macroscopic local realism may be defined as a premise

alism in order to derive the Bell inequalities. We then focusStatirlg the following. This meaning and definition of macro-
attention on the more general case where the results of mea-

surement may be microscopically separated. We show thgtcopic local realism has. bgen pr_eviously.ir!troduced in refer-
with the addition of macroscopic classical noise sources that C€S Refg.14] and[15] in line with the original EPR argu-

model a macroscopically imprecise measurement, one md’ye'nt, an_d its experimental realization for coptlnuous
derive the Bell inequalities using only the premise of macro-Variables introduced by Oet al.[17]. If one can predict the

scopic local realism. Thus if a violation of a Bell inequality "€Sult of a measurement Atby performing a simultaneous
is maintained in the presence of macroscopic uncertainties ifféasurement on a spatially separated sydiethen the re-
the measurement process, we have direct evidence for éﬂllt of the measurement Atis predetermined but described
incompatibility with macroscopic local realism. by an element of reality that has an indeterminacy in each of
In Sec. IV, quantum states are presented that show a vidts possible values, so that only values macroscopically dif-
lation of Bell's inequality with such macroscopic noise, thusferent from those predicted are excluded. We note that the
indicating an incompatibility of the predictions of quantum meaning of “predict” in the above definition could be loos-
mechanics with the very strict form of macroscopic localened to allow for an uncertainty in the prediction, as one
realism we have defined. We believe this is a very differentvould have in macroscopic experiments that incorporate
result, although some preliminary results presented in thisneasurement uncertainties.
paper have been published previouhp]. Such a test of Macroscopic local realism incorporates two assumptions.
macroscopic local realism provides an avenue to focussingye define a “macroscopic locality,” which states that mea-
on the peculiar macroscopic nonlocal aspects of the “macsyrements at a locatioB cannot instantaneously induce
roscopic entangled quantum state.” changes of a macroscopic magnituéer example, the dead
The application of Bell inequality theorems, and the effectyy gjive state of a cat, or a change between macroscopically
of noise on the violations predicted, to situations wherejifterent photon numbejsin a second systemA spatially
many photons fall on a detector is relevant to the question °§eparated fronB. Locality in its entirety, as used originally
whether or not tests of local realism can be conducted in thgy EPR and Bell, postulates that measurement eannot
experiments such as those performed by Smititegl. [16].  gisturh A in any way. We expect that our definition of a
Here correlation of photon numbers between two spatiallynacroscopic order of locality is equivalent to postulating that
separated but very intense fields is sufficient to givegcqity will always appear to be satisfied where measure-
“squeezed” noise levels. In these high-flux experiments, deent uncertainties do not enable resolution of results that
tection losses can be relatively small, allowing for the possiiffer by a microscopic or mesoscopic number of photons.
bility of the violation of a strong Bell inequality, but noise  The second assumption incorporated by macroscopic lo-
that limits the resolution of the photon number measurementy| realism is the assumption of a “macroscopic realism,”
can be large in absolute terms, as compared to tradition&lince a macroscopic local realism implies elements of reality
Bgll meqyal!ty experiments, which involve photon counting it (up to a macroscopic indeterminacy. Suppose an ele-
with low incident photon numbers. ment of reality may be symbolized by the variaklavherex
can take on numerical values ,X,, . ... Formicroscopic
realism, these values are specified to a microscopic level. For
macroscopic realism, these values have a macroscopic inde-
In the original argument of Einstein, Podolsky, and Roserterminacy, by this meaning that one can only exclude values
(EPR [1], “local realism” is defined in the following way. for the associated physical variable that are macroscopically
For “realism,” it is sufficient to state that if one can predict different from the valuexq,x,, . ... We seedhat if x;,X,
with certainty the result of a measurement of a physicalre only microscopically distinct, they are in this case no
guantity atA, without disturbing the syster, then the re- longer distinguished by different hidden variable values.
sults of the measurement were predetermined and one has anThe notion of realism is exclusive of “quantum superpo-
“element of reality,” corresponding to this physical quan- sition states” in the following sense. If a physical quantity
tity. The element of reality is a variable that assumes one ofor an ensemble of systems is attributed an element of reality
the set of values that are the predicted results of the measure-as above, then the element of reality for each individual
ment. Locality postulates that measurement8 eannot dis-  system will take on one of the valugg,x,, . ... This value
turb A in any way. Taken together with realism then, asis the result of the measurement of the physical quantity,

II. DEFINITIONS OF MACROSCOPIC LOCAL REALISM
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should it be performed. This element of reality picture is A B
different from the standard quantum picture of a system be- as b

ing in a “quantum superposition” of two states of different
X; . According to a standard quantum mechanics interpreta-
tion, an individual system described by such a superpositior
cannot be thought of as being in one or the other of the two
states prior to measurement. If the values of the element o
reality are defined with zero uncertainty, then the element of ,
reality theory excludesor is different in its interpretation ne+noise
from) a “quantum superposition” of states; and x;+ & (a)
where § is nonzero.

We consider the existence of an element of reality that is A
only macroscopically specified, having values that can only
be specified not to be macroscopically different from a value
X. This macroscopic realism description says nothing about
the possibility of superpositions of states microscopically or
mesoscopically different from. Macroscopic local realism
cannot exclude the possibility of quantum superpositions of
states microscopically or mesoscopically different, with re- ®)
spect to the physical quantity represented by the element of
reality. We can, however, exclude the possibility of the
guantum superpositions of states with macroscopically dn‘rosCOpIC local realism(@) Measurement of spin operatoB; and
ferent values for the physical quantity concerned. ¢ This measurement scheme is equivalent to balan%ed homodyne

Since it says nothing about microscopic systems, macrodetection of the quadrature phase amplitudgsand X of the
scopic local realism is a less restrictive premise than “Iocalf'9|0|561 ,b_, in the limit of largea, 8. In the proposed experlment
realism” used in its entirety. Local realism in its full sense a_,b_ are of low intensity whilea, ,b, are intense coherent-state
can define elements of reality with values having no uncer}a) “local oscillator” fields. In this experiment, large intensities are
tainty and therefore can exclude the possibility of quantunincident on each of the photodiode detectds.Importantly in this
Superposmons of states with all Separat|(§rmcro|nc|us|ve alternative arrangement, the fleldS are first combined using a

B
ng+noise

A}
ds

ng+noise

a; Source

FIG. 1. Schematic representation of our proposed test of mac-

to macroinclusiviin the relevant variable. beam splitter and phase shift so that both outgoing fialdsnci-
dent on the measuring apparatus are macroscopic. The measure-
IIl. BELL INEQUALITIES WITH NOISE: TESTS OF ment apparatus is depicted here by the beam splitter with variable
MACROSCOPIC LOCAL REALISM angle 4, although a polarizer may also be possible for suitable

states. A similar arrangement occursBatin this experiment the
Our proposed experiment to test macroscopic local realentire boxed apparatus may be considered the source. The measured
ism is depicted in Fig. 1, wher@. andb. are boson opera- quantity in terms of tha.. ,b.. fields is still ) andS} as above in
tors for outgoing fields, generated from a suitable source té®-
be discussed in Sec. 1V, at the spatially separated locations
andB, respectively. We define the Schwinger spin operator§—i6)]/y2, followed by photodetection. AB modes, d’,

=[b,+b_exp(ig)]/y2 are similarly generated. The pos-

SA_(ats L ata
= + . AN AN
Sc=(aia-+aza)f2, sible outcomes for the photon number, ¢’ (andd’’ d’,)

$-(ala_-a'a.)2i, (1) @re0.1,... irinteger steps. The spin values fﬁ’;‘; and “§3
are then given by the photon-number differencgs=2S;
$-(ala,—-a'a ). =c'lc,—c'Tc. andn$=28}=d'"d,—d'"d’ .

o Alternatively in Fig. 1b), thea. are first combined18]
Similar operatorsS; S} ,SP are defined for the modes Bt through a beam splitter and then phase shifted, to give out-
We measure simultaneously Atand B the Schwinger spin  going fields a’ =(a_—a.)/y2 and a’, =i(a_+a.)/\2.
operators These may now be considered system fields, upon which the

measurement,=2S5)=c’ c, —c' c_ is made through the

S)=Shcoso+)sino, 2 RS
transformation (with polarizer or beam splitter ¢,
and =a’.cosbl2+a’ sindl2 andc_=a’, sing/2—a’ cosbl2 fol-
5 a8 . lowed by photodetection. Figurdh) depicts a measurement
Sg=5¢C0Sh+S;sin, 3 &) cos¢+3,sin @ made on system operataa$ , but is the
respectively. same measurement depicted in Figa)Ifor the fieldsa.. .

In Fig. 1(a) the measurement &tis performed with phase We use similar definitionsASQ’, AS’;', and ASQV for the
shift ¢ and a beam splitter to produag, =[a,*+a_exp  Schwinger operators in terms af. . Similar transformations
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are defined for the measurement Bt We present this always macroscopically different, it becomes apparent that
scheme because, for the particular choice of quantum statsne need only assume “macroscopic local realism” as op-
discussed in Sec. |V it ensures both f|gds|nc|dent on the posed to local realism in its entirety to obtain the Bell in-
measurement apparat(mlarize can be macroscopic. This €dqualities. This is because in assuming the independence of
arrangement then is crucial in providing a test of macro-this probabilityp? (6,1) on ¢, we need only assume a mac-

scopic realism.

We classify the result of our measurement-as if the
result for the photon number difference measurenménor
ﬁs; is positive or zero, and- 1 otherwise. The results Btare
classified similarly. We build up the following probability
distributions: P2 () for obtaining +1 atA; P%(¢) for
obtaining+ 1 atB; and P42 (6, ¢), the joint probability of
obtaining+1 at bothA andB.

We first consider the predictions as given by the original

definition of local realism(local hidden variablesused by
Einstein-Podolsky-Rosen, Bell, and Clauser-Horr&4].
The probability of obtaining+ 1 for Sj is expressed as

Pﬁw):f p(N)P% (O, M)dN. @
The probability of obtainingt+1 for S(/) is
PE<¢):f ONLHEBNLIS 5

The joint probability for obtainingt1 for both of the simul-
taneous measurements withat A and ¢ atB is

P%(0.9)= [ pOOPROMPE G A @
Here p (6,\) is the probability for getting the result 1
given the hidden variables; p%(¢;\) is the probability
for getting the resultt 1 given \; while p(\) is the prob-
ability distribution for the hidden variables.

It is well known [3,4] that one can derive the following

“strong” Bell-Clauser-Horne inequality from the assump-

tions of local realism made so far:

_ PLE(0,0)—PIE(6,0") + PR(0, )+ PAE

P2(6')+PE (o)

(0", 9")

<1. (7)

To date, this “strong”

inequality has not been violated in
any experiment, because of the poor detection inefficiencies

roscopic locality, that the measuremenBadoes not disturb

the system afA in a macroscopic way to make the change
from +1 to — 1. The elements of reality need only be speci-
fied “macroscopically”; that is, they can have a macroscopic
indeterminacy in their values and still adequately represent
the distinct outcomes of measurement. We can add certain
(though not all perturbations of a macroscopic si@e pho-

ton numbey to the values predicted by the “elements of
reality” and not change the final form of the Bell inequality.

The violation of the Bell inequality(7), where the pos-
sible results of all relevant measuremeffisr all relevant
anglesd and ¢) are macroscopically distinct, would be firm
confirmation of an incompatibility with macroscopic local
realism. To our knowledge no such violation has yet been
demonstrated.

In order to test for macroforms of local realism in more
general situationgwhere the possible results are not always
macroscopically separatgave propose to add local classical
noise sources to the final readout stage of each of the mea-
surement processes, Atand B. We will assume that the

result for the photon number differenng or nf atA andB,
respectively, is of the form+ N, wheren is the result of the
measurement in the absence of the noise .&hid a local
classical noise term. The noise term#andB are indepen-
dent, modeling a local physical source of noise, and as such
always satisfy locality, the noise added At for example,
being independent of the experimental choice of the atigle

at B.

We will derive a Bell inequality based on the premise of
macroscopic local realism alone by showing that the addition
of this classical noise to the final measurement result can
alter the premises needed to derive the Bell inequality. We
first define the probability?[*%(,$) for obtaining results
i/2 andj/2, respectively, upon joint measuremenﬁﬁfatA,
and Sg at B, in the absence of the applied noise. Trandj
are then results for the photon-number differentfer ﬁ';’,,

respectively. In terms of a local hidden variable description,
this probability is given by

PoAR(6, ¢)—f p(M)PR(ONPF (NN, (8)

that occur in photon counting experiments. It is well docu-

mented that it is possible to derive, with the assumption of We next outline how the assumption of local realism, as

additional premises, a weaker form of the Bell inequality thatdefined originally by EPR, implies the hidden variable de-

has been violated in photon counting experiments where description (8) above. This is in order to postulate how the

tection losses are high. In this paper, however, we restrict oubove expression is modified if one makes only the macro-

attention to the strong inequalities that do not require addiscopic local realism assumption.

tional assumptions. Our proposed experiments involve pho- A perfect correlation between measurement resulté at

todiode detectors that have high efficiencies and thereforand B is predicted to be possible for some quantum states.

allow for the possibility of a strong violation of local realism. For such situations, it is possible to predict precisely the
In deriving the Bell inequalities, one specifies a probabil-result of a measurement Aty performing a particular mea-

ity p+(0 \) for getting the result+1 as opposed to-1
given the hidden variables. If the results+1 and—1 are

surement aB. We are able to dedude], assuming local
realism and following the reasoning of EPR as outlined in
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Sec. Il, the existence of a set of “elements of realitynﬁ relaxed, allowing the conditional distributior[:,A(e,)\) to
andmi, one for each subsystemArndB, and one for each become nonlocal, that is, to have an explicit dependence on
choice of measurement anglepr ¢, atA or B, respectively. the experimental angled. The locality condition is relaxed,
The m/} assumes one of a set of definite values, this valudlowever, only up to the level d#l photons, wheré/ is not
giving the result of the measuremesitat A should it be ~MAcroscopic, by maintaining that the measuremei @n-
performed. The semf;‘,m?, forms a set of hidden variablas Mt instantaneously change the resulfdty an amount ex-
for the system. ceedingM photons. . .

More generally, there will be a reduced correlation be- By relaxing the locality assumption up M photons, the

A
tween measurements performeddaandB. This is generally elements of realiym, (deduced by way of the EPR argu

. men) even in situations of perfect correlation will automati-
so for the case where measurements incorporate macroscop!

o ) . glly have a distributiorp{*(e,gb,)\), which is no longer &
gncertalntles. Local realism S,t'" aHO\,NS us t.o deAduce the exi‘unction, though the distribution will be zero for valuesiof
istence of an element of realifyve will call it mj)) for the

) , exceeding the value mﬁﬁ by greater tham photons. This is
photon-number difference & with measurement angleat  pecause we can no longer exclude the possibility of changes
A, since we can make a prediction of the resulbatithout (4 the result of photon number measurementsAdty an
dls_turblng_ the s_ystem aA, under the locality assumption. gmount of up toM photons, due to the measuremenBat
This prediction is based on a measurement performesl at  gimjlarly, in the case of imperfect correlation, the “fuzzi-

In this case, however, the element of realityy becomes ness” of the elements of reality as given by the conditional
“fuzzy.” The “values” that the element of reality can as- distributionp{*(#,\) is increased by an amount whose upper
sume do not form a set of definite numbers with zero uncertimit is determined by the value &fl and which may depend
tainty, but rather a set of distributions, one for each possibl®n ¢. Now we must consider the prediction for E®) as
resultm at B, which we label bymj=m. The distribution  given by macroscopic local realism. The elements of reality
labeled by the element of realityl’g assuming the valuem  deduced using macroscopic local realism cannot give predic-
gives the probability of a result for the measureméri#t A tions for the results of measurement that are macroscopically
should it be performed. It is independent ¢f the experi- different from those predicted from the elements of reality
menter’s choice of angle &, if a simultaneous measure- deduced using local realism. Where our predicted result for a
ment atB should be performed. One can apply similar rea-measurement & is i’ using local realism, macroscopic lo-
soning to deduce the existence of a set of indeterminateal realism allows the result to bé+ m, wherem, can be
elements of realityn® . any number not macroscopic. Importantly, whileis not

The assumption of “local realism”then justifies the local dependent on the choigg for a simultaneous measurement
hidden variable description used in E§), and Egs(4)—(6), at B, the valuem, can be. We therefore introduce the mac-
above. Local realism implies that the system is always in aoscopic locality assumption into the expressi@h for the
state corresponding to a particular value for each of the elggrobabilities in terms of the hidden variables in the following
ments of realitym’g and mZ. The whole set of “elements of manner. We assume that the conditional probabﬂjﬁyo,)\)
reality” mj andmj form a set of “hidden variables” that in Eq.(8) takes the form of the following convolutiomhere
can be attributed to the system at a given time. Commo is a integer that is not macroscopic
notation symbolizes the complete set of hidden variables by
A, and the underlying joint probability distribution A ANL AL
p(mj,mf) becomesp()\). The probabilitiesp(\) for the Pi (0"75’)‘):mA:2_M Py (02D, (B:1). (9)
hidden variables are predetermined, and do not depend on
the experimental choice of and ¢. For each such state  [we similarly relax the locality assumption fpf(¢,\), al-
there is a probabilit;pﬁ(e,)\) that the result of @ measure- lowing for a dependence o#, and introduce zpiB(¢,0,>\)

ment atA will be n. In the case with perfect correlation, the gefined in a similar fashioh.The original local probability
“elements of reality” give precise values for the result of the distribution pA

hoton number measurement. Suppose the resattB cor i"L(B’)\)’ as would be specified through local
b u LY A realism, may be convolved with a microscopic or mesos-

relates withn at A. Then we havep/ (6,\)=1 if A=m) : i L ANL
=m, and is zero otherwise. More generally, we have imper-COpIC nonlocal probability fUﬂCtIOpmA (0,4,1). The local

fect correlation and “fuzzy” elements of reality, meaning SPecification, which is not dependent on the experimental
that this p(8,\) assumes a finite variance as discussed0ice Of anglep atB, gives a(local) probability distribution

above. piA,’L(a,)\) for obtainingi" photons at, but the prediction is

We focus attention on the distributigef'(#,1), the prob- ~ Only correct to within=M photons. Thesélocal) distribu-
ability of getting a photon numberfor measurement a4  tions form the fuzzy “macroscopic elements of reality.” The
with angle 6, given that the system is in a hidden variable probab!llty distribution for an actual resulEi’ +mgy QtA is
state. The independence qn‘iA( 0,\) on ¢ is based on the d§t§{m|ned by t.he fgrther nonlocal .perturbatlon term
locality assumption used in its entirety, that the experimentPm, (6,¢,\), which gives the probability of a further
er's choice of measurement angle Btcannot (instanta- change ofm, photons. The nonlocal term is necessary be-
neously change the result of the measuremenfdh any  cause macroscopic local realism allows for the possibility

way. With macroscopic local realism the locality condition is that the measurement Btinstantaneously changes the result

+M

022110-5



M. D. REID PHYSICAL REVIEW A 62 022110

atA by M or less photons, whed is not macroscopic. The ties such a®*(N=x), such that the\'atA is greater than or
only restriction is that the nonlocal distribution does not pro-equal to the value. A probability PE(NV=x) is defined simi-
vide macroscopic perturbations, so that the probability ofiarly, for the noise term aB. The final measured probability

getting a nonlocal change outside the range,=  in the presence of noise is expressed as
—M, ...,+M is zero. Equivalently, we must havand
similarly for terms withB) o
M PI%(6.0)= J__E PIAB(0,)PAN=—1)PB(N=—)).
ANL _ =
mA;M PG, 6,0 = 1. (10) (11)

We now wish to obtain an expression for the measurabl@ve write the predictions for this expression in terms of the
probabilities P42 (9, ¢) in the presence of the local noise hidden variable theory by substituting the macroscopic local-
terms, in terms of the)*®(6,¢). We introduce noise dis- ity assumption9) into the hidden variable predictiai®) for
tribution functions at each ok andB, and define probabili- P{*%(6,¢). We get

) M M
PR.g)= 2 | p)| 2 phM L 0.00p05  (00) X pRNNL6.00p0E (qm}
ij=—o ma=—M A mg=—M B B
XANPAN=—1)PB(N=—)). (12
Recallingi=i'+m, andj=j’+mg, we change thé, | summation to one ovar, |’ to get
oo M
PAR(0.¢)= X fpu)pﬁ'L(e,x)[mE . pﬁfL(i',e,¢,x>PA[N>—<i'+mA>]]p,-B:L<¢>,x>
i,,j,:—w A= —
M
x[ 2 pn (06,00 PPLN= = (j +mg) ] dh. (13
mg=—

At this point we introduce the following assumption regarding the macroscopic nature of the noise”tekf# x): the
increase or decrease whby an amount of up td/1 photons gives only a negligible change to the probability that the noise is
of sizex or greaterPALN=— (i’ + m,) ]=PAW=—i") and similarly for the noise term at B. This gives us

M M
2 P 0,8 PANE = (it my J~PANZ =) X PRt 0,6.0). (14)

ma=— ma=

Clearly this is only valid for noise that is macroscopic in sigecalling thatM is a number that is not macroscopi®Vith
assumption(10) we get the simplification to obtain a final form

PLE(0.8)= 2 | p(VP) (0.M)P7 (6 M ANPAN= —i")PE(NV= ). (15
|',j'
|
This prediction of the hidden variable theory is now given in IV. QUANTUM STATES VIOLATING BELL
a (local) form like that of Eq.(6). A similar study of the INEQUALITIES WITH MACROSCOPIC NOISE:
expressions for the marginal probabilities leadgldaal) ex- PREDICTED FAILURE OF MACROSCOPIC LOCAL
pressions like those of Eqgl) and(5), and the Bell inequali- REALISM

ties (7) therefore readily follow. The noise ternig, which L

add a macroscopic uncertainty to the photon number result, W€ Presenta quantum state that shows violations of Bell
alter the premises needed to derive the Bell inequality. wanequalities in the presence of macroscopic noise. By the
need only to assume macroscopic local realism to derive th@P0Ve arguments, this state then is evidence of macroscopic
inequalities(7) in the presence of macroscopic noise terms)oca! realism.

Therefore violation of these Bell inequalities in the presence *(r2)n

of truly macroscopic noise terms would be evidence of a - 2\1-12% 107

failureyof macroscgpic local realism. [#)=T1o(2ro)] Zo n! |n>a7|n)b7|a)a+|,8)b+. (16
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Herel, is a modified Bessel function. The fields andb.,
are in coherent stat¢&>a+ and| ,6’>b+, respectively, and we

allow a, B to be real and largen), is a Fock state for field S

k. The fieldsa_ andb_, often referred to as signal and idler
fields, respectively, are microscopic and generated in a pair-
coherent state withy=1.1. Pair-coherent states were consid-
ered originally by Agarwal and co-workef$9]. They might
potentially be generated using nondegenerate parametric 0s-
cillation (as suggested by Reid and Kripprid®] and ex-
plored in the recent work by Gilchrist and Munfd9]) in a

limit where one-photon losses are negligible, or some similar
process, as modeled by the following Hamiltonian in which
coupled two-photon signal-idler loss dominates over linear
single-photon loss:

H=isE@'b' —a_b_)+a b It+albll. @7

The coherent states far, andb, would be derived from

PHYSICAL REVIEW A 62022110
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FIG. 2. Svs « for 6=0,¢p=—7w/4,0' =wl2,¢p' = —37ld,a=p

for the quantum statél6) with no noise present. The dashed line
gives the maximum noise still giving a violation of the Bell

the laser pump for the oscillator. HeEerepresents a coher- jnequality (7) for the above parameters v& Macroscopic values

ent driving parametric term that generates signal-idler pairsare possible with increasing.

while T' represents reservoir systems that give rise to the

coupled signal-idler loss. The Hamiltonian preserves thgiolated, and it is understood by replacing the boson opera-

signal-idler ~ photon  number  difference
at

a'a_—b'b_, of which the quantum statd6) is an eigen-

operatortors a, and b, by classical amplitudes and 3, respec-
tively. We see tha8) from Eq.(2) can be expressed &)

state, with an eigenvalue of zero. We note the analogy her@[éié_exp(—i0)+é+éiexpd 9))/2= a>”<’;/2, and similarly

to the single mode “even” and “odd” coherent superposi-
tion statesNY%(|a)*|—a)) {where a is real andN;®

S5=pX5/2, whereXj=a_exp(-i6)+a’ exp(6) and X5

* _7 i nt A B
—2[1+ exp(—2|a|?)]} which are generated by the degen- —P-8XP(—i¢)+b_exp(i#). The Xy and X, are the

erate form(put a_=b_) of the Hamiltonian(17). These
states for larger are analogous to the famous “Schinger-

quadrature phase amplitudes of the fiefds and b_, re-
spectively. We then see that the photon-number measure-

cat” states]9,10] and have been recently experimentally ex-ments ) and 233, give results in the larger, 8 limit cor-

plored[11-13. We point out later other choices pf) pos-
sible.

To model noise we allowV to be a random noise term
with a Gaussian distribution of standard deviat®nAn ex-
ample of a noisy photon-number measurement is the photo-

diode detection of very large intensities, such as those usedS

in the experiments of Smithest al.[16]. The photocurrent is
processed electronically in a way that adds noise to the final
output current, giving a final imprecision in the photon num-
ber measurement. Although percentage detection efficiencies
are high for diode detectors, detection inefficiencies can also
create a potentially large absolute noise term that also limits
the resolution of the photon number measurement.

Violations of the Bell inequality(7), for the statg16), in
the absence of noise are shown in Fig. 2, cut@e The
effect of adding increasing noise is to reduce the valug of
until eventually the violation is lost, at a cutoff noise value
o, as shown in Fig. 3. In Fig. 2, cune) shows this cutoff
valueo . (the maximum noise still allowing a violation of the
Bell inequality versusa. We note the linear dependence of
o:. on a (0.,=0.26x). In the limit of larger« this cutoff
noise o, then becomes macroscopic. Violations of fixed
magnitude §—1.057 asa— ) are still possible for in-
creasingly larger absolute noise, simply by increasing

The asymptotic behavior in the large 8 limit is crucial
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responding numerically to the scaled quadrature phase
amplitudesa’Xf and X8, respectively.
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FIG. 3. S vs the noise parameter, for 6=0,p=— w/4,0’
to determining whether macroscopic local realism will be=#/2,¢'=—37/4,a= 8 for the quantum statél 6), wherea = 10.
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Figure Xa) in fact shows for largey, 8 the experimental KA = SA+ (1=l V2 (X X 21
arrangement for balanced homodyne detecffi, a tech- Lo~ X+ N2 Rgpace +Kopac-). (2D
nigue commonly used to measure quadrature phase ampli-

tudes. In Fig. 1a) the homodyne scheme measures theang the termsX,,,.. are quadrature phase amplitudes for
quadrature phase amplitudg$ andX5 , of the fieldsa_ and  the independent- and — vacuum modes representing the

b_. The large intensity fields, and b, are the “local input fieldsa, .. anda,,._ , respectively. Additional terms
oscillator” fields usually considered to be classical ampli-that give negligible contributions with large have been
tudesa, B. Violations of Bell inequalitie$7) (failure of local ~ omitted. We see how los&described byn<1) causes a
realism for precisely these asymptotic quadrature phase amnoise term (/1— 7/1/2) (Xg,pac+ + Xgpac—) in the signal
plitude measurements have recently been shown by Gilchrigjuadrature phase amplitude. Because of the fagtar this
and co-workerg21], the value ofS=1.0157 presented in term can be large enough to give potentially macroscopic
these quadrature phase amplitude calculations indeed corrgbsolute noise values in photon numbers for the photon num-
sponding to our larger limit (Fig. 2). ber difference measurement. Violations of the Bell inequality
Calculations[21,22 that model the addition of noise to considered by Gilchrist and co-workef21] have been
the quadrature phase amplitude measurenﬁ‘:’?nt&i reveal shown to be obtainable in the presence of detector losses
violations of the Bell inequality to be lost at the cutoff value (7=~0.98). We see from the above analysis that this will
of 0,=0.26. This asymptotic result allows us to make acorrespond for sufficiently large to a macroscopic absolute
prediction of the effect of noisén the largew limit) on the ~ noise term in the photon number measurements. Thus we
full photon-number calculation presented in Fig. 2. The de-have a second situation where violations of a Bell inequality

tected photon-number difference is given as are predicted possible in the presence of large absolute de-
tector noise, this prediction indicating an incompatibility of
=28 =ctct—clc_—aXA. (18  Quantum mechanics with macroscopic local realism.

We can deduce from our asymptofi@rge «,8) study
other state$y) that will give a failure of macroscopic local
realism. Any statey) that shows a failure of local realism

for measurementx; and X5 on fieldsa_ andb_ will also
show a violation of macroscopic local realism, provided
oscillator amplitude. Therefore the cutoff valug,=0.26 fa que Iarge];fThis fOIIO\.NS bﬁcaus}e_}here \fNIi" al:/vaysll be a
will correspond to a cutoff noise value of.=aoy in the _|n|te noise cuto 7o meaning that a failure of local realism

i A N is possible for noise values less thap. For large enough
measurement of photon-number different=25;, con- a, B this cutoff will correspond to a macroscopic noise cutoff

firming the linear behavior shown in Fig. 2, and the predic- _ . -
tion that is made from this that it is possible to obtain mac-v_alue 7e=adg in the photon number measuremet@t (and

roscopic noise values while still obtaining a contradictionSimilarly for measurement). This is an important point
with local realism. This property then is a predicted contra-Since other states violating local realism for quadrature phase
diction of quantum mechanics with macroscopic local real-@mplitude measurements, either by way of a Bell inequality
ism as we have defined it. or by way of the Greenberger-Horne-Zeilinger phenomenon,
Detection inefficiencies will also contribute to a noise in Nave recently been predict¢@l]. This greatly increases the
the final result for the measurement, though in this case th&COPe€ for a practical violation of macroscopic local realism.
noise will not be Gaussian. Noise caused by detector losses A failure of local realism in the presence of macroscopic
is often modeled by a beam-splitter interaction immediately0ise terms(as we have predicted here for states showing

prior to photodetection. The field to be detected, giy, is failure of local realism for quadrature phase amplitude mea-

taken to be an input to a beam splitter. The second input tgurement)ms not typical. Consider as a source for the out-

the beam splittea is considered to be a vacuum. The going fieldsé’i, pictured in Fig. b), the following higher
output vact ' spin state, which has been studied in much detail by Mermin

and Drummond and othef6—8§]. It is well known that this
~ e, N state gives a violation of Bell inequalities for larfye and is
Cl+ = Ve, + V1= nayac: . (19 often considered to be an example of a violation of a “mac-

. - . roscopic local realism:
where 7 is the overall efficiency factor, is then taken to be

the effective detected field. A similar effective fietd _ is L
constructed for the second detector, used to measureat _ 2t et L art et \N

locationA, and a second vacuum inpaif,._ is defined. The
detected photon-number difference is now given as

Noise of size\" added to the photon-number differencf
result is equivalent to noise of si2é («) added to the signal

guadrature phase amplitudfég result. The noise in the
photon-number difference is scaled by a factoeothe local

Yet a study of the behavior of the violation of the Bell in-

np=c'l,cl,—c'| ¢/ =naXfy, (200 equality (7) with respect to noise added to the final photon
number measurements gives a cutoff noise limit that is mi-
where croscopic for large incident photon humbér This effect is

022110-8
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1.30 0.50 distinguished from amplification, which comes after the se-
S o lection of #, as part of the measurement process. This
¢ second-mentioned amplification comes about in all experi-
L 0.45 ments, but does not imply that one can deduce “macroscopic
1.20 - elements of reality” as we have defined them here. The “el-
(b) ement of reality” is a variable whose values refer to a physi-
OQ@%%%%%%%oo%%%og%%%%} 0.40 cal quantity defined for a system, for example, the position
1o} of a particle. In the context of the Einstein-Podolsky-Rosen
and Bell arguments, the “system(for example, the particle
or photon field has a well-defined meaning independent of
the measuring apparatipolarizer or beam splitter phase-
shift combinations and associated amplification. A macro-
scopic element of reality is a variable whose possible values
0.30 are defined only with a macroscopic uncertainty. The value
for the element of reality and its associated uncertainty have
a clear meaning, and can be readily classified as macroscopic
N or not macroscopic. For example, the uncertainty in the mea-
FIG. 4. Line (a) gives S versusN, for the quantum staté22) sured value for the pqs?tion_of a particle can be microscopic
with no noise present. Here we have selected the following re|ati0l1;egardless of an amplified final readout value.
between the anglesp—0=60'—¢dp=¢'—0'=¢ and ¢' — =3y
and optimizedS with respect toy. Line (b) gives the maximum
noise g, still giving a violation of the Bell inequality(7) for the
above parameters. In this case the cutoff neiggemains micro- Our claim therefore is that earlier wofk,8] suggestive of
scopic for largeN. violations of local realism at a macroscopic level must be
interpreted carefully before claiming a loss of local realism
at a “macroscopic” level. The failure of a Bell inequality in
cases where the photon number can be macroscopic but

It may be asked how a macroscopic claim can be mad&vrher? mFa;]urefmlent refsolunon IS peffelc‘ mlay nl_ot automati-
from the predictions discussed in this paper, given that th ally imply the failure ot a macroscopic local realism, as we

. o . . . . have defined it.
signal fielda_ is microscopic. It is noted in response to this |, summary, we have considered the concept of orders of

question that, although the fietd. is itself microscopic, the |ocal realism, from macro- through mesoscopic to micro-

physical quantity measured, and to which the elements ofcopic, which apply to experiments with an increasing pre-

reality relate, is the combined Schwinger operﬁ@n The cision of measurement. Macroscopic local realism excludes

results for this measurement have a macroscopic range aitie possibility of macroscopic changes to a sys&wccur-

can tolerate increasing levels @bsolute noise. ring as a result of events that occur simultaneously at a spa-
However, it is crucial that the macroscopic nature of ourtially separated syster. This is as opposed to local realism

result is clarified in the arrangement of Figbll Here the used inits entirety, right down to the most microscopic level,

field a_ is combined with the fieldh, to produce the mac- Which excludes all orders of change.

L ~, . . . . We have derived Bell inequalities which, if violated in
roscopic fieldsa’, , prior to the experimenter’s selection of . . .y )
= experiments with a limited resolution of photon numbers,

the angled. These outgoing macroscopic fields may then || imply a failure of these less restrictive forms of local
be regarded as the system/Aatin this situation, both fields  realism. We claim that the proven failure, if ever achievable,
a’. incident on the measurement apparatus, depicted by @f this macroscopic local realism is conclusive evidence that
polarizer(or beam splitterwith the choice off in Fig. 1(b), the *“startling” properties apparently attributed to “en-
are macroscopidA similar description applies to the fields tangled Schidinger cat” states are inescapable. A class of
atB.) quantum stategthose showing a violation of local realism

An important point is that the combining of fields, which for quadrature phase amplitudesith this property has been
comes about as part of the state preparation, can be cleanhyoposed.

0.35

V. CONCLUSIONS

plotted in Fig. 4. This is in contrast to our stdtk), which
gives a macroscopic cutoff noise value in the limit of large
.
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