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Violations of Bell inequalities for measurements with macroscopic uncertainties: What it means to
violate macroscopic local realism
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We suggest a method to test the premise of ‘‘macroscopic local realism’’ that is sufficient to derive Bell
inequalities when measurements of photon numbers are only accurate to an uncertainty of ordern photons,
wheren is macroscopic. Macroscopic local realism is only sufficient to imply, in the context of the original
Einstein-Podolsky-Rosen argument, fuzzy ‘‘elements of reality’’ that have a macroscopic indeterminacy. We
show therefore how the violation of local realism in the presence of macroscopic uncertainties implies the
failure of macroscopic local realism. Quantum states violating this macroscopic local realism are presented.

PACS number~s!: 03.65.Bz
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I. INTRODUCTION

There is increasing evidence for the failure of ‘‘local r
alism’’ as defined originally by Einstein, Podolsky, an
Rosen@1#, Bohm @2#, and Bell @3,4#. For certain correlated
quantum systems, Einstein, Podolsky, and Rosen argued
local realism is sufficient to imply that the results of me
surements are predetermined. These predetermined ‘‘hid
variables’’ ~called ‘‘elements of reality’’ by Einstein, Podol
sky, and Rosen! exist to describe the value of a physic
quantity, whether or not the measurement is performed,
as such are not part of a quantum description. Bell la
showed that the predictions of quantum mechanics for
tain ideal quantum states could not be compatible with s
hidden variable theories.

It is now widely accepted therefore, as a result of Be
theorem and related experiments@5#, that local realism mus
be rejected. However, the rejection of local realism impl
by these results is at the most microscopic level of a sin
photon, in the sense that the hidden variables~or ‘‘elements
of reality’’ ! and the experimental results of measureme
involved must be defined to the precision of one photon
better in order to prove local realism invalid. The failure
local realism in microscopic systems has long been ass
ated with the existence of entangled quantum superpos
states. In microscopic systems there can only be superp
tions of states microscopically distinct.

Little is known about the validity of local realism in mor
‘‘macroscopic experiments,’’ where experimental uncerta
ties are larger~becoming macroscopic! in size, in an absolute
sense. At least there has to our knowledge been no form
tion of a Bell-type theorem or a related experimental inv
tigation for such a situation. Previous works@6–8# sugges-
tive of incompatibilities of local realism in macroscop
systems have considered the case where the measure
are performed with perfect accuracy and are thus not
amples of macroscopic experiments as we have defined t
here.

Generally, it is thought that true macroscopic quant
effects come about from the quantum superpositions of st
that are macroscopically distinguishable@9,10#, often re-
ferred to as ‘‘Schro¨dinger cat’’ states. This point has bee
1050-2947/2000/62~2!/022110~10!/$15.00 62 0221
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much discussed. Leggett and Garg@10# have shown the in-
compatibility of such macroscopic quantum states with
combined premises of ‘‘macroscopic realism’’ and ‘‘macr
scopic noninvasive measurability.’’ They, however, cons
ered macroscopic quantum superposition states at a s
location only, and did not introduce the premise of localit

There has been much interest and debate over wheth
not ‘‘Schrödinger cat’’ states can truly exist. The existenc
for which there is now experimental evidence@11–13#, of
‘‘Schrödinger cat’’ states would appear to be closely link
to the question of the validity of local realism at the mo
macroscopic level we have described. One would susp
that a violation of local realism, which is evident in an e
periment where uncertainties are large, would be due mor
entangled macroscopic superpositions than microsuperp
tions.

In this paper, we begin~in Sec. II! by defining the physi-
cal premise of ‘‘macroscopic local realism’’@14# so as to
identify the peculiar features of the macroscopically e
tangled quantum states in a way that is independent of
quantum formulation. Macroscopic local realism is only su
ficient to assign, to a system, predetermined elements o
ality ~or hidden variables! that are intrinsically macroscopic
in that they have a macroscopic indeterminacy in their v
ues.

Suppose our ‘‘Schro¨dinger’s cat’’ is correlated with a sec
ond system spatially separated from the cat, for exampl
gun used to kill the cat. Let us suppose a gun that has b
fired implies a dead cat; a gun that has not been fired imp
a cat that is alive. We can predict the result for a measu
ment of the cat~whether dead or alive!, without disturbing
the cat, by a measurement of the gun. Macroscopic lo
realism is the premise used to imply the existence of
element of reality for the cat. The element of reality in th
case is a variable that assumes one of two values: one v
corresponding to the ‘‘dead’’ state and the other value c
responding to the ‘‘alive’’ state. The assignment of this e
ment of reality then means that the cat is always eit
‘‘dead’’ or ‘‘alive,’’ regardless of whether or not it is being
observed or measured. Macroscopic local realism is use
this case because the two possible results of measureme
the cat, ‘‘alive’’ and ‘‘dead,’’ are macroscopically distinc
To summarize, the rejection of macroscopic local realism
©2000 The American Physical Society10-1
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M. D. REID PHYSICAL REVIEW A 62 022110
this example means that we cannot think of the cat as b
either dead or alive, even though we can predict the ‘‘dea
or ‘‘alive’’ result of ‘‘measuring’’ the cat, without disturbing
the cat, by measuring the correlated spatially separated
ond system, which in this case is the gun. The rejection
macroscopic local realism is a more startling result than,
is not implied by, the rejection of local realism as indicat
by Bell’s theorem.

In Sec. III we point out that for situations where the po
sible results are all macroscopically distinguishable, we n
only to assume the strong premise of macroscopic local
alism in order to derive the Bell inequalities. We then foc
attention on the more general case where the results of m
surement may be microscopically separated. We show
with the addition of macroscopic classical noise sources
model a macroscopically imprecise measurement, one
derive the Bell inequalities using only the premise of mac
scopic local realism. Thus if a violation of a Bell inequali
is maintained in the presence of macroscopic uncertaintie
the measurement process, we have direct evidence fo
incompatibility with macroscopic local realism.

In Sec. IV, quantum states are presented that show a
lation of Bell’s inequality with such macroscopic noise, th
indicating an incompatibility of the predictions of quantu
mechanics with the very strict form of macroscopic loc
realism we have defined. We believe this is a very differ
result, although some preliminary results presented in
paper have been published previously@15#. Such a test of
macroscopic local realism provides an avenue to focus
on the peculiar macroscopic nonlocal aspects of the ‘‘m
roscopic entangled quantum state.’’

The application of Bell inequality theorems, and the effe
of noise on the violations predicted, to situations whe
many photons fall on a detector is relevant to the questio
whether or not tests of local realism can be conducted in
experiments such as those performed by Smitheyet al. @16#.
Here correlation of photon numbers between two spati
separated but very intense fields is sufficient to g
‘‘squeezed’’ noise levels. In these high-flux experiments,
tection losses can be relatively small, allowing for the pos
bility of the violation of a strong Bell inequality, but nois
that limits the resolution of the photon number measurem
can be large in absolute terms, as compared to traditio
Bell inequality experiments, which involve photon countin
with low incident photon numbers.

II. DEFINITIONS OF MACROSCOPIC LOCAL REALISM

In the original argument of Einstein, Podolsky, and Ros
~EPR! @1#, ‘‘local realism’’ is defined in the following way.
For ‘‘realism,’’ it is sufficient to state that if one can predi
with certainty the result of a measurement of a physi
quantity atA, without disturbing the systemA, then the re-
sults of the measurement were predetermined and one h
‘‘element of reality,’’ corresponding to this physical qua
tity. The element of reality is a variable that assumes one
the set of values that are the predicted results of the meas
ment. Locality postulates that measurements atB cannot dis-
turb A in any way. Taken together with realism then,
02211
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defined above, for ‘‘local realism’’ it is sufficient to imply
that if one can predict the result of a measurement atA, by
making a simultaneous measurement atB, then the result of
the measurement atA is a predetermined property of th
systemA. In the case of perfect correlation and perfect me
surements, the predetermined value~the element of reality!
for any individual systemA will have zero uncertainty, since
we can determine it precisely by measurements onB, and
because all orders of change to systemA as a result of the
measurement atB are excluded by locality.

Macroscopic local realism may be defined as a prem
stating the following. This meaning and definition of macr
scopic local realism has been previously introduced in re
ences Refs.@14# and@15# in line with the original EPR argu-
ment, and its experimental realization for continuo
variables introduced by Ouet al. @17#. If one can predict the
result of a measurement atA by performing a simultaneou
measurement on a spatially separated systemB, then the re-
sult of the measurement atA is predetermined but describe
by an element of reality that has an indeterminacy in each
its possible values, so that only values macroscopically
ferent from those predicted are excluded. We note that
meaning of ‘‘predict’’ in the above definition could be loos
ened to allow for an uncertainty in the prediction, as o
would have in macroscopic experiments that incorpor
measurement uncertainties.

Macroscopic local realism incorporates two assumptio
We define a ‘‘macroscopic locality,’’ which states that me
surements at a locationB cannot instantaneously induc
changes of a macroscopic magnitude~for example, the dead
to alive state of a cat, or a change between macroscopic
different photon numbers! in a second systemA spatially
separated fromB. Locality in its entirety, as used originally
by EPR and Bell, postulates that measurements atB cannot
disturb A in any way. We expect that our definition of
macroscopic order of locality is equivalent to postulating th
locality will always appear to be satisfied where measu
ment uncertainties do not enable resolution of results
differ by a microscopic or mesoscopic number of photon

The second assumption incorporated by macroscopic
cal realism is the assumption of a ‘‘macroscopic realism
since a macroscopic local realism implies elements of rea
with ~up to! a macroscopic indeterminacy. Suppose an e
ment of reality may be symbolized by the variablex, wherex
can take on numerical valuesx1 ,x2 , . . . . For microscopic
realism, these values are specified to a microscopic level.
macroscopic realism, these values have a macroscopic i
terminacy, by this meaning that one can only exclude val
for the associated physical variable that are macroscopic
different from the valuesx1 ,x2 , . . . . We seethat if x1 ,x2
are only microscopically distinct, they are in this case
longer distinguished by different hidden variable values.

The notion of realism is exclusive of ‘‘quantum superp
sition states’’ in the following sense. If a physical quanti
for an ensemble of systems is attributed an element of rea
x as above, then the element of reality for each individ
system will take on one of the valuesx1 ,x2 , . . . . This value
is the result of the measurement of the physical quant
0-2
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VIOLATIONS OF BELL INEQUALITIES FOR . . . PHYSICAL REVIEW A 62 022110
should it be performed. This element of reality picture
different from the standard quantum picture of a system
ing in a ‘‘quantum superposition’’ of two states of differe
xi . According to a standard quantum mechanics interpr
tion, an individual system described by such a superposi
cannot be thought of as being in one or the other of the
states prior to measurement. If the values of the elemen
reality are defined with zero uncertainty, then the elemen
reality theory excludes~or is different in its interpretation
from! a ‘‘quantum superposition’’ of statesxi and xi1d
whered is nonzero.

We consider the existence of an element of reality tha
only macroscopically specified, having values that can o
be specified not to be macroscopically different from a va
x. This macroscopic realism description says nothing ab
the possibility of superpositions of states microscopically
mesoscopically different fromx. Macroscopic local realism
cannot exclude the possibility of quantum superpositions
states microscopically or mesoscopically different, with
spect to the physical quantity represented by the elemen
reality. We can, however, exclude the possibility of t
quantum superpositions of states with macroscopically
ferent values for the physical quantity concerned.

Since it says nothing about microscopic systems, ma
scopic local realism is a less restrictive premise than ‘‘lo
realism’’ used in its entirety. Local realism in its full sens
can define elements of reality with values having no unc
tainty and therefore can exclude the possibility of quant
superpositions of states with all separations~microinclusive
to macroinclusive! in the relevant variable.

III. BELL INEQUALITIES WITH NOISE: TESTS OF
MACROSCOPIC LOCAL REALISM

Our proposed experiment to test macroscopic local r
ism is depicted in Fig. 1, whereâ6 andb̂6 are boson opera
tors for outgoing fields, generated from a suitable source
be discussed in Sec. IV, at the spatially separated locatioA
andB, respectively. We define the Schwinger spin operat

Ŝx
A5~ â1

† â21â2
† â1!/2,

Ŝy
A5~ â1

† â22â2
† â1!/2i , ~1!

Ŝz
A5~ â1

† â12â2
† â2!/2.

Similar operatorsŜx
B ,Ŝy

B ,Ŝz
B are defined for the modes atB.

We measure simultaneously atA and B the Schwinger spin
operators

Ŝu
A5Ŝx

Acosu1Ŝy
Asinu, ~2!

and

Ŝf
B5Ŝx

Bcosf1Ŝy
Bsinf, ~3!

respectively.
In Fig. 1~a! the measurement atA is performed with phase

shift u and a beam splitter to produceĉ68 5@ â16â2exp
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s(2iu)#/A2, followed by photodetection. AtB modes, d̂68

5@ b̂16b̂2exp(2if)#/A2 are similarly generated. The pos
sible outcomes for the photon numberĉ81

† ĉ18 ~and d̂81
† d̂18 )

are 0,1, . . . ininteger steps. The spin values forŜu
A and Ŝf

B

are then given by the photon-number differencesn̂u
A52Ŝu

A

5 ĉ81
† ĉ18 2 ĉ82

† ĉ28 and n̂f
B52Ŝf

B5d̂81
† d̂18 2d̂82

† d̂28 .

Alternatively in Fig. 1~b!, the â6 are first combined@18#
through a beam splitter and then phase shifted, to give
going fields â28 5(â22â1)/A2 and â18 5 i (â21â1)/A2.
These may now be considered system fields, upon which
measurementn̂u

A52Ŝu
A5 ĉ1

† ĉ12 ĉ2
† ĉ2 is made through the

transformation ~with polarizer or beam splitter! ĉ1

5â18 cosu/21â28 sinu/2 and ĉ25â18 sinu/22â28 cosu/2 fol-
lowed by photodetection. Figure 1~b! depicts a measuremen

Ŝz
A8cosu1Ŝy

A8sinu made on system operatorsâ68 , but is the

same measurement depicted in Fig. 1~a! for the fieldsâ6 .

We use similar definitionsŜx
A8 , Ŝy

A8 , and Ŝz
A8 for the

Schwinger operators in terms ofâ68 . Similar transformations

FIG. 1. Schematic representation of our proposed test of m

roscopic local realism.~a! Measurement of spin operatorsŜu
A and

Ŝf
B . This measurement scheme is equivalent to balanced homo

detection of the quadrature phase amplitudesX̂u
A and X̂f

B of the

fields â2 ,b̂2 , in the limit of largea,b. In the proposed experimen

â2 ,b̂2 are of low intensity whileâ1 ,b̂1 are intense coherent-stat
ua& ‘‘local oscillator’’ fields. In this experiment, large intensities a
incident on each of the photodiode detectors.~b! Importantly in this
alternative arrangement, the fieldsâ6 are first combined using a

beam splitter and phase shift so that both outgoing fieldsâ68 inci-
dent on the measuring apparatus are macroscopic. The mea
ment apparatus is depicted here by the beam splitter with vari
angle u, although a polarizer may also be possible for suita
states. A similar arrangement occurs atB. In this experiment the
entire boxed apparatus may be considered the source. The mea

quantity in terms of theâ6 ,b̂6 fields is still Ŝu
A andŜf

B as above in
~a!.
0-3
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M. D. REID PHYSICAL REVIEW A 62 022110
are defined for the measurement atB. We present this
scheme because, for the particular choice of quantum s
discussed in Sec. IV, it ensures both fieldsâ68 incident on the
measurement apparatus~polarizer! can be macroscopic. Thi
arrangement then is crucial in providing a test of mac
scopic realism.

We classify the result of our measurement as11 if the
result for the photon number difference measurementn̂u

A or

n̂f
B is positive or zero, and21 otherwise. The results atB are

classified similarly. We build up the following probabilit
distributions:P1

A (u) for obtaining 11 at A; P1
B (f) for

obtaining11 at B; and P11
AB (u,f), the joint probability of

obtaining11 at bothA andB.
We first consider the predictions as given by the origi

definition of local realism~local hidden variables! used by
Einstein-Podolsky-Rosen, Bell, and Clauser-Horne@3,4#.
The probability of obtaining11 for Su

A is expressed as

P1
A ~u!5E r~l!p1

A ~u,l!dl. ~4!

The probability of obtaining11 for Sf
B is

P1
B ~f!5E r~l!p1

B ~f,l!dl. ~5!

The joint probability for obtaining11 for both of the simul-
taneous measurements withu at A andf at B is

P11
AB ~u,f!5E r~l!p1

A ~u,l!p1
B ~f,l!dl. ~6!

Here p1
A (u,l) is the probability for getting the result11

given the hidden variablesl; p1
B (f;l) is the probability

for getting the result11 given l; while r(l) is the prob-
ability distribution for the hidden variablesl.

It is well known @3,4# that one can derive the following
‘‘strong’’ Bell-Clauser-Horne inequality from the assum
tions of local realism made so far:

S5
P11

AB ~u,f!2P11
AB ~u,f8!1P11

AB ~u8,f!1P11
AB ~u8,f8!

P1
A ~u8!1P1

B ~f!

<1. ~7!

To date, this ‘‘strong’’ inequality has not been violated
any experiment, because of the poor detection inefficien
that occur in photon counting experiments. It is well doc
mented that it is possible to derive, with the assumption
additional premises, a weaker form of the Bell inequality th
has been violated in photon counting experiments where
tection losses are high. In this paper, however, we restrict
attention to the strong inequalities that do not require ad
tional assumptions. Our proposed experiments involve p
todiode detectors that have high efficiencies and there
allow for the possibility of a strong violation of local realism

In deriving the Bell inequalities, one specifies a probab
ity p1

A (u,l) for getting the result11 as opposed to21
given the hidden variablesl. If the results11 and21 are
02211
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always macroscopically different, it becomes apparent t
one need only assume ‘‘macroscopic local realism’’ as
posed to local realism in its entirety to obtain the Bell i
equalities. This is because in assuming the independenc
this probabilityp1

A (u,l) on f, we need only assume a ma
roscopic locality, that the measurement atB does not disturb
the system atA in a macroscopic way to make the chan
from 11 to 21. The elements of reality need only be spe
fied ‘‘macroscopically’’; that is, they can have a macroscop
indeterminacy in their values and still adequately repres
the distinct outcomes of measurement. We can add cer
~though not all! perturbations of a macroscopic size~in pho-
ton number! to the values predicted by the ‘‘elements
reality’’ and not change the final form of the Bell inequalit

The violation of the Bell inequality~7!, where the pos-
sible results of all relevant measurements~for all relevant
anglesu andf) are macroscopically distinct, would be firm
confirmation of an incompatibility with macroscopic loc
realism. To our knowledge no such violation has yet be
demonstrated.

In order to test for macroforms of local realism in mo
general situations~where the possible results are not alwa
macroscopically separated!, we propose to add local classic
noise sources to the final readout stage of each of the m
surement processes, atA and B. We will assume that the
result for the photon number differencen̂u

A or n̂f
B at A andB,

respectively, is of the formn1N, wheren is the result of the
measurement in the absence of the noise andN is a local
classical noise term. The noise terms atA andB are indepen-
dent, modeling a local physical source of noise, and as s
always satisfy locality, the noise added atA, for example,
being independent of the experimental choice of the anglf
at B.

We will derive a Bell inequality based on the premise
macroscopic local realism alone by showing that the addit
of this classical noise to the final measurement result
alter the premises needed to derive the Bell inequality.
first define the probabilityPi j

0,AB(u,f) for obtaining results
i /2 andj /2, respectively, upon joint measurement ofSu

A at A,
andSf

B at B, in the absence of the applied noise. Thei and j

are then results for the photon-number differencesn̂u
A or n̂f

B ,
respectively. In terms of a local hidden variable descripti
this probability is given by

Pi j
0,AB~u,f!5E r~l!pi

A~u,l!pj
B~f,l!dl. ~8!

We next outline how the assumption of local realism,
defined originally by EPR, implies the hidden variable d
scription ~8! above. This is in order to postulate how th
above expression is modified if one makes only the mac
scopic local realism assumption.

A perfect correlation between measurement results aA
and B is predicted to be possible for some quantum sta
For such situations, it is possible to predict precisely
result of a measurement atA by performing a particular mea
surement atB. We are able to deduce@3#, assuming local
realism and following the reasoning of EPR as outlined
0-4



lu

e

co
ex

.
t

-
e
ib

-
a
a

al

n
el
f
t

o
b

n

d

e
e

e
g
e

le

n

is

on
,

-
ti-

ges

i-
al
er

lity
dic-
ally

lity
or a
-

nt
c-

g

l
os-

tal

e

rm
r

e-
lity
ult

VIOLATIONS OF BELL INEQUALITIES FOR . . . PHYSICAL REVIEW A 62 022110
Sec. II, the existence of a set of ‘‘elements of reality,’’mu
A

andmf
B , one for each subsystem atA andB, and one for each

choice of measurement angle,u or f, atA or B, respectively.
The mu

A assumes one of a set of definite values, this va
giving the result of the measurementu at A should it be
performed. The setmu

A ,mf
B forms a set of hidden variablesl

for the system.
More generally, there will be a reduced correlation b

tween measurements performed atA andB. This is generally
so for the case where measurements incorporate macros
uncertainties. Local realism still allows us to deduce the
istence of an element of reality~we will call it mu

A) for the
photon-number difference atA, with measurement angleu at
A, since we can make a prediction of the result atA without
disturbing the system atA, under the locality assumption
This prediction is based on a measurement performed aB.
In this case, however, the element of realitymu

A becomes
‘‘fuzzy.’’ The ‘‘values’’ that the element of reality can as
sume do not form a set of definite numbers with zero unc
tainty, but rather a set of distributions, one for each poss
result m at B, which we label bymu

A5m. The distribution
labeled by the element of realitymu

A assuming the valuem
gives the probability of a result for the measurementu at A
should it be performed. It is independent off, the experi-
menter’s choice of angle atB, if a simultaneous measure
ment atB should be performed. One can apply similar re
soning to deduce the existence of a set of indetermin
elements of realitymf

B .
The assumption of ‘‘local realism’’then justifies the loc

hidden variable description used in Eq.~8!, and Eqs.~4!–~6!,
above. Local realism implies that the system is always i
state corresponding to a particular value for each of the
ments of realitymu

A andmf
B . The whole set of ‘‘elements o

reality’’ mu
A and mf

B form a set of ‘‘hidden variables’’ tha
can be attributed to the system at a given time. Comm
notation symbolizes the complete set of hidden variables
l, and the underlying joint probability distributio
p(mu

A ,mf
B) becomesr(l). The probabilitiesr(l) for the

hidden variables are predetermined, and do not depen
the experimental choice ofu and f. For each such statel
there is a probabilitypn

A(u,l) that the result of au measure-
ment atA will be n. In the case with perfect correlation, th
‘‘elements of reality’’ give precise values for the result of th
photon number measurement. Suppose the resultm at B cor-
relates withn at A. Then we havepn

A(u,l)51 if l5mu
A

5m, and is zero otherwise. More generally, we have imp
fect correlation and ‘‘fuzzy’’ elements of reality, meanin
that this pn

A(u,l) assumes a finite variance as discuss
above.

We focus attention on the distributionpi
A(u,l), the prob-

ability of getting a photon numberi for measurement atA
with angleu, given that the system is in a hidden variab
statel. The independence ofpi

A(u,l) on f is based on the
locality assumption used in its entirety, that the experime
er’s choice of measurement angle atB cannot ~instanta-
neously! change the result of the measurement atA in any
way. With macroscopic local realism the locality condition
02211
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relaxed, allowing the conditional distributionspi
A(u,l) to

become nonlocal, that is, to have an explicit dependence
the experimental anglef. The locality condition is relaxed
however, only up to the level ofM photons, whereM is not
macroscopic, by maintaining that the measurement atB can-
not instantaneously change the result atA by an amount ex-
ceedingM photons.

By relaxing the locality assumption up toM photons, the
elements of realitymu

A ~deduced by way of the EPR argu
ment! even in situations of perfect correlation will automa
cally have a distributionpi

A(u,f,l), which is no longer ad
function, though the distribution will be zero for values ofi
exceeding the value ofmu

A by greater thanM photons. This is
because we can no longer exclude the possibility of chan
to the result of photon number measurements atA by an
amount of up toM photons, due to the measurement atB.

Similarly, in the case of imperfect correlation, the ‘‘fuzz
ness’’ of the elements of reality as given by the condition
distributionpi

A(u,l) is increased by an amount whose upp
limit is determined by the value ofM and which may depend
on f. Now we must consider the prediction for Eq.~8! as
given by macroscopic local realism. The elements of rea
deduced using macroscopic local realism cannot give pre
tions for the results of measurement that are macroscopic
different from those predicted from the elements of rea
deduced using local realism. Where our predicted result f
measurement atA is i 8 using local realism, macroscopic lo
cal realism allows the result to bei 81mA wheremA can be
any number not macroscopic. Importantly, whilei 8 is not
dependent on the choicef for a simultaneous measureme
at B, the valuemA can be. We therefore introduce the ma
roscopic locality assumption into the expression~8! for the
probabilities in terms of the hidden variables in the followin
manner. We assume that the conditional probabilitypi

A(u,l)
in Eq. ~8! takes the form of the following convolution~where
M is a integer that is not macroscopic!:

pi
A~u,f,l!5 (

mA52M

1M

pmA

A,NL~u,f,l!pi 85 i 2mA

A,L
~u,l!. ~9!

@We similarly relax the locality assumption forpi
B(f,l), al-

lowing for a dependence onu, and introduce api
B(f,u,l)

defined in a similar fashion.# The original local probability
distribution pi 8

A,L(u,l), as would be specified through loca
realism, may be convolved with a microscopic or mes
copic nonlocal probability functionpmA

A,NL(u,f,l). The local

specification, which is not dependent on the experimen
choice of anglef atB, gives a~local! probability distribution
pi 8

A,L(u,l) for obtainingi 8 photons atA, but the prediction is
only correct to within6M photons. These~local! distribu-
tions form the fuzzy ‘‘macroscopic elements of reality.’’ Th
probability distribution for an actual resulti 5 i 81mA at A is
determined by the further nonlocal perturbation te
pmA

A,NL(u,f,l), which gives the probability of a furthe

change ofmA photons. The nonlocal term is necessary b
cause macroscopic local realism allows for the possibi
that the measurement atB instantaneously changes the res
0-5



ro
o

b
e
-

he
al-

M. D. REID PHYSICAL REVIEW A 62 022110
at A by M or less photons, whereM is not macroscopic. The
only restriction is that the nonlocal distribution does not p
vide macroscopic perturbations, so that the probability
getting a nonlocal change outside the rangemA5
2M , . . . ,1M is zero. Equivalently, we must have~and
similarly for terms withB)

(
mA52M

M

pmA

A,NL~ i 8,u,f,l!51. ~10!

We now wish to obtain an expression for the measura
probabilitiesP11

AB (u,f) in the presence of the local nois
terms, in terms of thePi j

0,AB(u,f). We introduce noise dis
tribution functions at each ofA andB, and define probabili-
in

su
W
th
s
c

f

02211
-
f

le

ties such asPA(N>x), such that theN at A is greater than or
equal to the valuex. A probabilityPB(N>x) is defined simi-
larly, for the noise term atB. The final measured probability
in the presence of noise is expressed as

P11
AB ~u,f!5 (

i , j 52`

`

Pi j
0,AB~u,f!PA~N>2 i !PB~N>2 j !.

~11!

We write the predictions for this expression in terms of t
hidden variable theory by substituting the macroscopic loc
ity assumption~9! into the hidden variable prediction~8! for
Pi j

0,AB(u,f). We get
e is
P11
AB ~u,f!5 (

i , j 52`

` E r~l!F (
mA52M

M

pmA

A,NL~ i 8,u,f,l!pi 85 i 2mA

A,L
~u,l! (

mB52M

M

pmB

B,NL~ j 8,f,u,l!pj 85 j 2mB

B,L
~f,l!G

3dlPA~N>2 i !PB~N>2 j !. ~12!

Recallingi 5 i 81mA and j 5 j 81mB , we change thei , j summation to one overi 8, j 8 to get

P11
AB ~u,f!5 (

i 8, j 852`

` E r~l!pi 8
A,L

~u,l!H (
mA52M

M

pmA

A,NL~ i 8,u,f,l!PA@N>2~ i 81mA!#J pj 8
B,L

~f,l!

3H (
mB52M

M

pmB

B,NL~ j 8,f,u,l!PB@N>2~ j 81mB!#J dl. ~13!

At this point we introduce the following assumption regarding the macroscopic nature of the noise termPA(N>x): the
increase or decrease ofx by an amount of up toM photons gives only a negligible change to the probability that the nois
of sizex or greater,PA@N>2( i 81mA)#'PA(N>2 i 8) and similarly for the noise term at B. This gives us

(
mA52M

M

pmA

A,NL~ i 8,u,f,l!PA@N>2~ i 81mA!#'PA~N>2 i 8! (
mA52M

M

pmA

A,NL~ i 8,u,f,l!. ~14!

Clearly this is only valid for noise that is macroscopic in size~recalling thatM is a number that is not macroscopic!. With
assumption~10! we get the simplification to obtain a final form

P11
AB ~u,f!5 (

i 8, j 8
E r~l!pi 8

A,L
~u,l!pj 8

B,L
~f,l!dlPA~N>2 i 8!PB~N>2 j 8!. ~15!
ell
the
opic
This prediction of the hidden variable theory is now given
a ~local! form like that of Eq.~6!. A similar study of the
expressions for the marginal probabilities leads to~local! ex-
pressions like those of Eqs.~4! and~5!, and the Bell inequali-
ties ~7! therefore readily follow. The noise termsN, which
add a macroscopic uncertainty to the photon number re
alter the premises needed to derive the Bell inequality.
need only to assume macroscopic local realism to derive
inequalities~7! in the presence of macroscopic noise term
Therefore violation of these Bell inequalities in the presen
of truly macroscopic noise terms would be evidence o
failure of macroscopic local realism.
lt,
e
e
.
e
a

IV. QUANTUM STATES VIOLATING BELL
INEQUALITIES WITH MACROSCOPIC NOISE:

PREDICTED FAILURE OF MACROSCOPIC LOCAL
REALISM

We present a quantum state that shows violations of B
inequalities in the presence of macroscopic noise. By
above arguments, this state then is evidence of macrosc
local realism.

uc&5@ I 0~2r 0
2!#21/2(

n50

`
~r 0

2!n

n!
un&a2

un&b2
ua&a1

ub&b1
. ~16!
0-6
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HereI 0 is a modified Bessel function. The fieldsâ1 andb̂1

are in coherent statesua&a1
and ub&b1

, respectively, and we

allow a, b to be real and large.un&k is a Fock state for field
k. The fieldsâ2 andb̂2 , often referred to as signal and idle
fields, respectively, are microscopic and generated in a p
coherent state withr 051.1. Pair-coherent states were cons
ered originally by Agarwal and co-workers@19#. They might
potentially be generated using nondegenerate parametri
cillation ~as suggested by Reid and Krippner@19# and ex-
plored in the recent work by Gilchrist and Munro@19#! in a
limit where one-photon losses are negligible, or some sim
process, as modeled by the following Hamiltonian in whi
coupled two-photon signal-idler loss dominates over lin
single-photon loss:

H5 i\E~ â2
† b̂2

† 2â2b̂2!1â2b̂2Ĝ†1â2
† b̂2

† Ĝ. ~17!

The coherent states forâ1 and b̂1 would be derived from
the laser pump for the oscillator. HereE represents a coher
ent driving parametric term that generates signal-idler pa
while Ĝ represents reservoir systems that give rise to
coupled signal-idler loss. The Hamiltonian preserves
signal-idler photon number difference operat
â2

† â22b̂2
† b̂2 , of which the quantum state~16! is an eigen-

state, with an eigenvalue of zero. We note the analogy h
to the single mode ‘‘even’’ and ‘‘odd’’ coherent superpos
tion statesN6

1/2(ua&6u2a&) $where a is real and N6
21

52@16 exp(22uau2)#% which are generated by the dege
erate form ~put â25b̂2) of the Hamiltonian~17!. These
states for largea are analogous to the famous ‘‘Schro¨dinger-
cat’’ states@9,10# and have been recently experimentally e
plored@11–13#. We point out later other choices ofuc& pos-
sible.

To model noise we allowN to be a random noise term
with a Gaussian distribution of standard deviations. An ex-
ample of a noisy photon-number measurement is the ph
diode detection of very large intensities, such as those u
in the experiments of Smitheyet al. @16#. The photocurrent is
processed electronically in a way that adds noise to the fi
output current, giving a final imprecision in the photon nu
ber measurement. Although percentage detection efficien
are high for diode detectors, detection inefficiencies can a
create a potentially large absolute noise term that also lim
the resolution of the photon number measurement.

Violations of the Bell inequality~7!, for the state~16!, in
the absence of noise are shown in Fig. 2, curve~a!. The
effect of adding increasing noise is to reduce the value oS
until eventually the violation is lost, at a cutoff noise valu
sc , as shown in Fig. 3. In Fig. 2, curve~b! shows this cutoff
valuesc ~the maximum noise still allowing a violation of th
Bell inequality! versusa. We note the linear dependence
sc on a (sc50.26a). In the limit of largera this cutoff
noise sc then becomes macroscopic. Violations of fix
magnitude (S→1.057 asa→}) are still possible for in-
creasingly larger absolute noise, simply by increasinga.

The asymptotic behavior in the largea,b limit is crucial
to determining whether macroscopic local realism will
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violated, and it is understood by replacing the boson ope
tors â1 and b̂1 by classical amplitudesa and b, respec-
tively. We see thatŜu

A from Eq. ~2! can be expressed asŜu
A

5@ â1
† â2exp(2iu)1â1â2

† exp(iu)#/25aX̂u
A/2, and similarly

Ŝf
B5bX̂f

B/2, whereX̂u
A5â2exp(2 iu)1â2

† exp(iu) and X̂f
B

5b̂2exp(2 if)1b̂2
† exp(if). The X̂u

A and X̂f
B are the

quadrature phase amplitudes of the fieldsâ2 and b̂2 , re-
spectively. We then see that the photon-number meas
ments 2Ŝu

A and 2Ŝf
B give results in the largea,b limit cor-

responding numerically to the scaled quadrature ph
amplitudesaX̂u

A andbX̂f
B , respectively.

FIG. 2. S vs a for u50,f52p/4,u85p/2,f8523p/4,a5b
for the quantum state~16! with no noise present. The dashed lin
gives the maximum noisesc still giving a violation of the Bell
inequality ~7! for the above parameters vsa. Macroscopic values
are possible with increasinga.

FIG. 3. S vs the noise parameters, for u50,f52p/4,u8
5p/2,f8523p/4,a5b for the quantum state~16!, wherea510.
0-7



p
th

li

am
hr

or

o

e
a

de

l

ic
c

on
ra
a

in
th

ss
el

t
e

e

or
e

pic
um-
lity

ses
ill

e
we

lity
de-

of

l

ed
e a

ff

ase
lity
on,
e
m.
ic

ing
ea-
t-

in

c-

-
on
mi-

M. D. REID PHYSICAL REVIEW A 62 022110
Figure 1~a! in fact shows for largea,b the experimental
arrangement for balanced homodyne detection@20#, a tech-
nique commonly used to measure quadrature phase am
tudes. In Fig. 1~a! the homodyne scheme measures
quadrature phase amplitudesX̂u

A andX̂f
B , of the fieldsâ2 and

b̂2 . The large intensity fieldsâ1 and b̂1 are the ‘‘local
oscillator’’ fields usually considered to be classical amp
tudesa,b. Violations of Bell inequalities~7! ~failure of local
realism! for precisely these asymptotic quadrature phase
plitude measurements have recently been shown by Gilc
and co-workers@21#, the value ofS51.0157 presented in
these quadrature phase amplitude calculations indeed c
sponding to our largea limit ~Fig. 2!.

Calculations@21,22# that model the addition of noise t
the quadrature phase amplitude measurementsX̂u

A ,X̂f
B reveal

violations of the Bell inequality to be lost at the cutoff valu
of s050.26. This asymptotic result allows us to make
prediction of the effect of noise~in the largea limit ! on the
full photon-number calculation presented in Fig. 2. The
tected photon-number difference is given as

n̂u
A52Ŝu

A5 ĉ1
† ĉ12 ĉ2

† ĉ25aX̂u
A . ~18!

Noise of sizeN added to the photon-number differencen̂u
A

result is equivalent to noise of sizeN/(a) added to the signa
quadrature phase amplitudeX̂u result. The noise in the
photon-number difference is scaled by a factor ofa, the local
oscillator amplitude. Therefore the cutoff values050.26
will correspond to a cutoff noise value ofsc5as0 in the
measurement of photon-number differencen̂u

A52Ŝu
A , con-

firming the linear behavior shown in Fig. 2, and the pred
tion that is made from this that it is possible to obtain ma
roscopic noise values while still obtaining a contradicti
with local realism. This property then is a predicted cont
diction of quantum mechanics with macroscopic local re
ism as we have defined it.

Detection inefficiencies will also contribute to a noise
the final result for the measurement, though in this case
noise will not be Gaussian. Noise caused by detector lo
is often modeled by a beam-splitter interaction immediat
prior to photodetection. The field to be detected, say,ĉ18 , is
taken to be an input to a beam splitter. The second inpu
the beam splitterâvac1 is considered to be a vacuum. Th
output

ĉL18 5Ah ĉ18 1A12hâvac1 , ~19!

whereh is the overall efficiency factor, is then taken to b
the effective detected field. A similar effective fieldĉL28 is

constructed for the second detector, used to measureĉ28 , at

locationA, and a second vacuum inputâvac2 is defined. The
detected photon-number difference is now given as

n̂u
A5 ĉ8L1

† ĉL18 2 ĉ8L2
† ĉL28 5haX̂Lu

A , ~20!

where
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X̂Lu
A 5hX̂u

A1~A12h/A2!~X̂u,vac11X̂u,vac2!, ~21!

and the termsX̂u,vac6 are quadrature phase amplitudes f
the independent1 and 2 vacuum modes representing th
input fieldsâvac1 andâvac2 , respectively. Additional terms
that give negligible contributions with largea have been
omitted. We see how loss~described byh,1) causes a
noise term (A12h/A2) (Xu,vac11Xu,vac2) in the signal
quadrature phase amplitude. Because of the factorha, this
term can be large enough to give potentially macrosco
absolute noise values in photon numbers for the photon n
ber difference measurement. Violations of the Bell inequa
considered by Gilchrist and co-workers@21# have been
shown to be obtainable in the presence of detector los
(h'0.98). We see from the above analysis that this w
correspond for sufficiently largea to a macroscopic absolut
noise term in the photon number measurements. Thus
have a second situation where violations of a Bell inequa
are predicted possible in the presence of large absolute
tector noise, this prediction indicating an incompatibility
quantum mechanics with macroscopic local realism.

We can deduce from our asymptotic~large a,b) study
other statesuc& that will give a failure of macroscopic loca
realism. Any stateuc& that shows a failure of local realism
for measurementsX̂u

A and X̂f
B on fieldsâ2 and b̂2 will also

show a violation of macroscopic local realism, provid
a, b are large. This follows because there will always b
finite noise cutoffs0, meaning that a failure of local realism
is possible for noise values less thans0. For large enough
a,b this cutoff will correspond to a macroscopic noise cuto
valuesc5as0 in the photon number measurementn̂u

A ~and

similarly for measurementn̂f
B). This is an important point

since other states violating local realism for quadrature ph
amplitude measurements, either by way of a Bell inequa
or by way of the Greenberger-Horne-Zeilinger phenomen
have recently been predicted@21#. This greatly increases th
scope for a practical violation of macroscopic local realis

A failure of local realism in the presence of macroscop
noise terms~as we have predicted here for states show
failure of local realism for quadrature phase amplitude m
surements! is not typical. Consider as a source for the ou
going fieldsâ68 , pictured in Fig. 1~b!, the following higher
spin state, which has been studied in much detail by Merm
and Drummond and others@6–8#. It is well known that this
state gives a violation of Bell inequalities for largeN, and is
often considered to be an example of a violation of a ‘‘ma
roscopic local realism’’:

uw&5
1

N! ~N11!1/2~ â81
† b̂81

† 1â82
† b̂82

† !Nu0&u0&. ~22!

Yet a study of the behavior of the violation of the Bell in
equality ~7! with respect to noise added to the final phot
number measurements gives a cutoff noise limit that is
croscopic for large incident photon numberN. This effect is
0-8
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plotted in Fig. 4. This is in contrast to our state~16!, which
gives a macroscopic cutoff noise value in the limit of lar
a.

It may be asked how a macroscopic claim can be m
from the predictions discussed in this paper, given that
signal fieldâ2 is microscopic. It is noted in response to th
question that, although the fieldâ2 is itself microscopic, the
physical quantity measured, and to which the elements
reality relate, is the combined Schwinger operatorŜu

A . The
results for this measurement have a macroscopic range
can tolerate increasing levels of~absolute! noise.

However, it is crucial that the macroscopic nature of o
result is clarified in the arrangement of Fig. 1~b!. Here the
field â2 is combined with the fieldâ1 to produce the mac
roscopic fieldsâ68 , prior to the experimenter’s selection o

the angleu. These outgoing macroscopic fieldsâ68 may then
be regarded as the system atA. In this situation, both fields
â68 incident on the measurement apparatus, depicted b
polarizer~or beam splitter! with the choice ofu in Fig. 1~b!,
are macroscopic.~A similar description applies to the field
at B.!

An important point is that the combining of fields, whic
comes about as part of the state preparation, can be cle

FIG. 4. Line ~a! gives S versusN, for the quantum state~22!
with no noise present. Here we have selected the following rela
between the angles:f2u5u82f5f82u85c and f82u53c
and optimizedS with respect toc. Line ~b! gives the maximum
noisesc still giving a violation of the Bell inequality~7! for the
above parameters. In this case the cutoff noisesc remains micro-
scopic for largeN.
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distinguished from amplification, which comes after the s
lection of u, as part of the measurement process. T
second-mentioned amplification comes about in all exp
ments, but does not imply that one can deduce ‘‘macrosco
elements of reality’’ as we have defined them here. The ‘‘
ement of reality’’ is a variable whose values refer to a phy
cal quantity defined for a system, for example, the posit
of a particle. In the context of the Einstein-Podolsky-Ros
and Bell arguments, the ‘‘system’’~for example, the particle
or photon field! has a well-defined meaning independent
the measuring apparatus~polarizer or beam splitter phase
shift combinations! and associated amplification. A macro
scopic element of reality is a variable whose possible val
are defined only with a macroscopic uncertainty. The va
for the element of reality and its associated uncertainty h
a clear meaning, and can be readily classified as macrosc
or not macroscopic. For example, the uncertainty in the m
sured value for the position of a particle can be microsco
regardless of an amplified final readout value.

V. CONCLUSIONS

Our claim therefore is that earlier work@7,8# suggestive of
violations of local realism at a macroscopic level must
interpreted carefully before claiming a loss of local realis
at a ‘‘macroscopic’’ level. The failure of a Bell inequality in
cases where the photon number can be macroscopic
where measurement resolution is perfect may not autom
cally imply the failure of a macroscopic local realism, as w
have defined it.

In summary, we have considered the concept of order
local realism, from macro- through mesoscopic to mic
scopic, which apply to experiments with an increasing p
cision of measurement. Macroscopic local realism exclu
the possibility of macroscopic changes to a systemB occur-
ring as a result of events that occur simultaneously at a s
tially separated systemA. This is as opposed to local realism
used in its entirety, right down to the most microscopic lev
which excludes all orders of change.

We have derived Bell inequalities which, if violated i
experiments with a limited resolution of photon numbe
will imply a failure of these less restrictive forms of loca
realism. We claim that the proven failure, if ever achievab
of this macroscopic local realism is conclusive evidence t
the ‘‘startling’’ properties apparently attributed to ‘‘en
tangled Schro¨dinger cat’’ states are inescapable. A class
quantum states~those showing a violation of local realism
for quadrature phase amplitudes! with this property has been
proposed.
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