26 research outputs found

    Optical control and quantum information processing with ultracold alkaline-earth-like atoms

    Get PDF
    Ultracold neutral atoms in optical lattices are rich systems for the investigation of many-body physics as well as for the implementation of quantum information processing. While traditionally alkali atoms were used for this research, in recent years alkaline-earth-like atoms have attracted considerable interest. This is due to their more complex but tractable internal structure and easily accessible transitions. Furthermore, alkaline-earth-like atoms have extremely narrow 1S→3P{}^1S\rightarrow{}^3P intercombination transitions, which lend themselves for the implementation of next generation atomic clocks. In this dissertation, I show that exquisite control of alkaline-earth-like atoms can be reached with optical methods, and elucidate ways to use this controllability to further different aspects of research, mainly quantum information processing. Additionally, the control of alkaline-earth-like atoms is very interesting in many-body physics and the improvement of atomic clocks. Since heating usually degrades the performance of quantum gates, recooling of qubits is a necessity for the implementation of large scale quantum computers. Laser cooling has advantages over the usually used sympathetic cooling, given that it requires no additional atoms, which have to be controlled separately. However, for qubits stored in hyperfine states, as usually done in alkali atoms, laser cooling leads to optical pumping and therefore to loss of coherence. On the other hand, in the ground state, the nuclear spin of alkaline-earth-like atoms is decoupled from the electronic degrees of freedom. As I show in this dissertation, this allows for the storage of quantum information in the nuclear spin and laser cooling on the electronic degrees of freedom. The recooling protocol suggested here consists of two steps: resolved sideband cooling on the extremely narrow 1S0→3P0{}^1S_0\rightarrow {}^3P_0 clock transition and subsequent quenching on the much shorter lived 1P1{}^1P_1 state. A magnetic field is used to overcome the hyperfine interaction in this excited state and thus ensures decoupling of the nuclear spin degrees of freedom during the quenching. The application of this magnetic field also allows for photon scattering on the 1P1{}^1P_1 state, while preserving the nuclear spin, e. g. for electronic qubit detection. The manipulation of the scattering properties of neutral atoms is an important aspect of quantum control. In contrast to alkali atoms, whose broad linewidths cause large losses, this can be done with purely optical methods via the implementation of an optical Feshbach resonance for alkaline-earth-like atoms. Here, the scattering length resulting from the application of an optical Feshbach resonance on the 1S0→3P1{}^1S_0\rightarrow {}^3P_1 intercombination line, including hyperfine interaction and rotation is calculated for 171{}^{171}Yb. Due to their different parities, the p-wave scattering length can be controlled independently from the s-wave scattering length, thus allowing for unprecedented control over the scattering properties of neutral atoms. Furthermore, I also show how optical Feshbach resonances in alkaline-earth-like atoms can be used together with the underlying quantum symmetry to implement collisional gates between nuclear-spin qubits over comparatively long ranges

    Nachhaltige Bildung im Anfangsunterricht durch die individuelle Bildungsprozessbegleitung von Kindern am Übergang Kita - Grundschule. FrĂŒhe LiteralitĂ€t und bio-psycho-soziales Wohlbefinden im Fokus

    Get PDF
    Um Beobachtungsinstrumente entwickeln zu können, die der engen Verzahnung der DomĂ€nen FrĂŒhe LiteralitĂ€t und bio-psycho-soziales Wohlbefinden gerecht werden und dabei praxistauglich sind, bedarf es der Beteiligung der Praxis. Die zugrundeliegende Fragestellung des Beitrags lautet daher: Welche Erwartungen und WĂŒnsche haben pĂ€dagogische FachkrĂ€fte an ein entsprechendes Beobachtungs- und Dokumentationsverfahren? (DIPF/Orig.

    Cordon-Bleu Is an Actin Nucleation Factor and Controls Neuronal Morphology

    Get PDF
    SummaryDespite the wealth of different actin structures formed, only two actin nucleation factors are well established in vertebrates: the Arp2/3 complex and formins. Here, we describe a further nucleator, cordon-bleu (Cobl). Cobl is a brain-enriched protein using three Wiskott-Aldrich syndrome protein homology 2 (WH2) domains for actin binding. Cobl promotes nonbundled, unbranched filaments. Filament formation relies on barbed-end growth and requires all three Cobl WH2 domains and the extended linker L2. We suggest that the nucleation power of Cobl is based on the assembly of three actin monomers in cross-filament orientation. Cobl localizes to sites of high actin dynamics and modulates cell morphology. In neurons, induction of both neurites and neurite branching is dramatically increased by Cobl expression—effects that critically depend on Cobl's actin nucleation ability. Correspondingly, Cobl depletion results in decreased dendritic arborization. Thus, Cobl is an actin nucleator controlling neuronal morphology and development

    Actinomyces in Chronic Granulomatous Disease: An Emerging and Unanticipated Pathogen

    Get PDF
    Background.Chronic granulomatous disease (CGD) is a rare inherited disease of the phagocyte NADPH oxidase system that causes defective production of toxic oxygen metabolites, impaired bacterial and fungal killing, and recurrent life-threatening infections, mostly by catalase-producing organisms. We report for the first time, to our knowledge, chronic infections with Actinomyces species in 10 patients with CGD. Actinomycosis is a chronic granulomatous condition that commonly manifests as cervicofacial, pulmonary, or abdominal disease, caused by slowly progressive infection with oral and gastrointestinal commensal Actinomyces species. Treatment of actinomycosis is usually simple in immunocompetent individuals, requiring long-term, high-dose intravenous penicillin, but is more complicated in those with CGD because of delayed diagnosis and an increased risk of chronic invasive or debilitating disease. Methods.Actinomyces was identified by culture, staining, 16S ribosomal DNA polymerase chain reaction, and/or a complement fixation test in 10 patients with CGD. Results.All 10 patients presented with a history of fever and elevated inflammatory signs without evident focus. Diagnosis was delayed and clinical course severe and protracted despite high-dose intravenous antibiotic therapy and/or surgery. These results suggest an unrecognized and unanticipated susceptibility to weakly pathogenic Actinomyces species in patients with CGD because these are catalase-negative organisms previously thought to be nonpathogenic in CGD. Conclusions.Actinomycosis should be vigorously sought and promptly treated in patients with CGD presenting with uncommon and prolonged clinical signs of infection. Actinomycosis is a catalase-negative infection important to consider in CG

    Filmmusik. Zwischen Ästhetik und Funktion - Einblicke in die Bereiche der Wirkung und Funktionen, des Marketing und der PĂ€dagogik.

    No full text
    Die Bachelor - Thesis befasst sich mit drei unterschiedliche Aspekte der Filmmusik: ihre Wirkung und Funktionen, ihre Verwendung im Marketing sowie ihre Bedeutung im Bereich der PÀdagogik. Dadurch wird ein umfassender Einblick in die Filmmusik gegeben. Den Schwerpunkt dabei bilden die Funktionen der Filmmusik und ihre Bedeutung. Grundlage der Arbeit waren, neben zahlreicher Literatur, GesprÀche mit renommierten Filmkomponisten und Klanggestaltern. Sie halfen mir, einen aktuellen Einblick in das Filmmusikgeschehen zu bekommen und haben diese Arbeit mit ihren eigenen Erfahrungen bereichert. So konnte ich beispielsweise direkt erfahren, wie die momentane Situation im Bereich des Musikmarketing aussieht. Abgerundet wird das Ganze durch eigene Erfahrungen aus Beobachtungen eines Seminars sowie einer Lehrveranstaltung mit Studioarbeit der Hochschule Offenburg

    α-Synuclein: The Long Distance Runner.

    Get PDF
    Parkinson's disease is characterized by α-synuclein pathology in the form of Lewy bodies and Lewy neurites. Braak et al described the spatial and temporal spread of α-synuclein pathology in Parkinson's disease. Recent experimental studies have demonstrated that α-synuclein can transfer from cell to cell. In this review, we highlight the involvement of α-synuclein in Parkinson's disease and in Braak's staging of Parkinson's disease pathology. We discuss whether a prion-like mechanism of α-synuclein spread might contribute to Parkinson's disease pathology. We describe recent studies investigating cell-to-cell transfer of α-synuclein and focus our review on the long-distance axonal transport of α-synuclein along neurons

    Slc1a3-2A-CreERT2 mice reveal unique features of Bergmann glia and augment a growing collection of Cre drivers and effectors in the 129S4 genetic background

    No full text
    Genetic variation is a primary determinant of phenotypic diversity. In laboratory mice, genetic variation can be a serious experimental confounder, and thus minimized through inbreeding. However, generalizations of results obtained with inbred strains must be made with caution, especially when working with complex phenotypes and disease models. Here we compared behavioral characteristics of C57Bl/6-the strain most widely used in biomedical research-with those of 129S4. In contrast to 129S4, C57Bl/6 demonstrated high within-strain and intra-litter behavioral hyperactivity. Although high consistency would be advantageous, the majority of disease models and transgenic tools are in C57Bl/6. We recently established six Cre driver lines and two Cre effector lines in 129S4. To augment this collection, we genetically engineered a Cre line to study astrocytes in 129S4. It was validated with two Cre effector lines: calcium indicator gCaMP5g-tdTomato and RiboTag-a tool widely used to study cell type-specific translatomes. These reporters are in different genomic loci, and in both the Cre was functional and astrocyte-specific. We found that calcium signals lasted longer and had a higher amplitude in cortical compared to hippocampal astrocytes, genes linked to a single neurodegenerative disease have highly divergent expression patterns, and that ribosome proteins are non-uniformly expressed across brain regions and cell types.Funding Agencies|Wallenberg Center for Molecular Medicine; German Science Foundation DFGGerman Research Foundation (DFG) [FOR 2795/PE1193/6-1]</p

    Inhibition of Stat3‐mediated astrogliosis ameliorates pathology in an Alzheimer's disease model

    No full text
    Abstract Reactive astrogliosis is a hallmark of Alzheimer's disease (AD), but its role for disease initiation and progression has remained incompletely understood. We here show that the transcription factor Stat3 (signal transducer and activator of transcription 3), a canonical inducer of astrogliosis, is activated in an AD mouse model and human AD. Therefore, using a conditional knockout approach, we deleted Stat3 specifically in astrocytes in the APP/PS1 model of AD. We found that Stat3‐deficient APP/PS1 mice show decreased ÎČ‐amyloid levels and plaque burden. Plaque‐close microglia displayed a more complex morphology, internalized more ÎČ‐amyloid, and upregulated amyloid clearance pathways in Stat3‐deficient mice. Moreover, astrocyte‐specific Stat3‐deficient APP/PS1 mice showed decreased pro‐inflammatory cytokine activation and lower dystrophic neurite burden, and were largely protected from cerebral network imbalance. Finally, Stat3 deletion in astrocytes also strongly ameliorated spatial learning and memory decline in APP/PS1 mice. Importantly, these protective effects on network dysfunction and cognition were recapitulated in APP/PS1 mice systemically treated with a preclinical Stat3 inhibitor drug. In summary, our data implicate Stat3‐mediated astrogliosis as an important therapeutic target in AD
    corecore