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Abstract

Ultracold neutral atoms in optical lattices are rich systems for the investigation

of many-body physics as well as for the implementation of quantum information

processing. While traditionally alkali atoms were used for this research, in recent

years alkaline-earth-like atoms have attracted considerable interest. This is due to

their more complex but tractable internal structure and easily accessible transitions.

Furthermore, alkaline-earth-like atoms have extremely narrow 1S → 3P intercombi-

nation transitions, which lend themselves for the implementation of next generation

atomic clocks.

In this dissertation, I show that exquisite control of alkaline-earth-like atoms can

be reached with optical methods, and elucidate ways to use this controllability to

further different aspects of research, mainly quantum information processing. Ad-
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ditionally, the control of alkaline-earth-like atoms is very interesting in many-body

physics and the improvement of atomic clocks.

Since heating usually degrades the performance of quantum gates, recooling of

qubits is a necessity for the implementation of large scale quantum computers. Laser

cooling has advantages over the usually used sympathetic cooling, given that it re-

quires no additional atoms, which have to be controlled separately. However, for

qubits stored in hyperfine states, as usually done in alkali atoms, laser cooling leads

to optical pumping and therefore to loss of coherence. On the other hand, in the

ground state, the nuclear spin of alkaline-earth-like atoms is decoupled from the elec-

tronic degrees of freedom. As I show in this dissertation, this allows for the storage of

quantum information in the nuclear spin and laser cooling on the electronic degrees

of freedom. The recooling protocol suggested here consists of two steps: resolved

sideband cooling on the extremely narrow 1S0 → 3P0 clock transition and subse-

quent quenching on the much shorter lived 1P1 state. A magnetic field is used to

overcome the hyperfine interaction in this excited state and thus ensures decoupling

of the nuclear spin degrees of freedom during the quenching. The application of this

magnetic field also allows for photon scattering on the 1P1 state, while preserving

the nuclear spin, e. g. for electronic qubit detection.

The manipulation of the scattering properties of neutral atoms is an important

aspect of quantum control. In contrast to alkali atoms, whose broad linewidths cause

large losses, this can be done with purely optical methods via the implementation

of an optical Feshbach resonance for alkaline-earth-like atoms. Here, the scatter-

ing length resulting from the application of an optical Feshbach resonance on the

1S0 → 3P1 intercombination line, including hyperfine interaction and rotation is cal-

culated for 171Yb. Due to their different parities, the p-wave scattering length can

be controlled independently from the s-wave scattering length, thus allowing for un-

precedented control over the scattering properties of neutral atoms. Furthermore, I

also show how optical Feshbach resonances in alkaline-earth-like atoms can be used
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together with the underlying quantum symmetry to implement collisional gates be-

tween nuclear-spin qubits over comparatively long ranges.
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Chapter 1

Introduction

Over the last decades, several different areas of research have driven a renewal in

atomic, molecular and optical (AMO) physics. The quest for ever more accurate

time standards caused investigations into improving the coherences of atoms for the

use in atomic clocks, the advent of laser cooling and trapping made exquisite control

over the states of atoms possible, and the prediction of the advantages of quantum

information processing over classical information processing have spurred even more

research on the coherent control of quantum systems. Due to the improvements in

these interdependent areas of basic research, we have now excellent control over the

positions, internal states and interactions of single atoms as well as of many-body

states.

While measurement of time was important for practical purposes as well as for

social and cultural reasons throughout human history, its relevance and the required

accuracy has increased dramatically in the last centuries. With the advent of the

industrial revolution, traveling times decreased and the communication over wide

distances became possible, thus requiring a reliable standard of time. But even then,

as during all of human history, time was measured with the help of astronomical

observations. However, in the last century this way of measuring time was neither
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practical nor accurate enough, given the further acceleration of our society and the

technical progress that required more and more accurate timekeeping. This lead to

the development of atomic clocks, in which the natural oscillation frequency of atoms

is used to measure time, which has several advantages over earlier methods. Since

all atoms of a given isotope have the exact same oscillation frequency, atomic clocks

are a much more universal time standard then other measurements. Furthermore,

astronomical observations generally have a low frequency, requiring the division of

one oscillation period, while the much higher frequency of atomic transitions merely

requires counting of oscillations, which is much easier. These advantages lead to the

adoption of the oscillation frequency of Cesium as international time standard in

1967, as well as to the redefinition of the meter in terms of the so defined second and

the speed of light, c. Modern Cesium fountain clocks have a fractional instability,

that is the error of the clock frequency divided by the frequency of the clock, of

σ = 1 × 10−14T−1/2 [1]. Generally, the fractional instability of an atomic clock is

given by

σ =
∆ν

ν

C

2π
√
NT

, (1.1)

where C is a constant of order unity, T is the interrogation time, N is the number of

interrogated atoms, and ∆ν is the linewidth of the clock transition with frequency

ν [2, 1]. This shows that the fractional instability can be decreased by interrogating

more atoms or by choosing a transition with a longer lifetime or higher frequency.

To take advantage of an increase of the number of atoms N or the interrogation

time T , however, these atoms have to be coherent. Thus, the system has to be very

well isolated from the environment, e.g stray magnetic or electric fields as well as

electromagnetic radiation have to be suppressed. Furthermore, to avoid effects due

to the motion of the atoms, they have to be cooled to very low temperatures and/or

tightly confined to traps.

During the 1980’s, laser cooling and trapping of atoms was developed, which

is continuing to have wide implications for several other fields of physics. Due to



Chapter 1. Introduction 3

the development of optical molasses, that is counterpropagating laser beams that

exert a drag on atoms, by Chu and Hollberg in 1985, neutral atoms could be cooled

to very low temperatures for the first time. A closely related technique, Sisyphus

cooling, which was accidentally discovered in molasses experiments and theoretically

explained in 1989 by Dalibard and Cohen-Tannoudji, makes it possible to cool neutral

atoms to temperatures below the Doppler limit, which was before considered to be

the absolute limit of laser cooling. Furthermore, the development of magneto-optical

traps by Chu in 1987 made it first possible to trap these ultracold atoms with laser

light. Additionally, a consequence of optical molasses and Sisyphus cooling is the

realization of optical lattices, in which atoms are trapped in a periodic potential

created by standing waves from counterpropagating laser beams, which was first

realized in 1992 by Jessen et al.. An in-depth account of these achievements can be

found in the Nobel lectures by Chu [3], Cohen-Tannoudji [4] and Phillips [5] from

1998, and references therein.

Cold atoms trapped in optical traps show coherences over long times and large

distances, and allow for the control of their interactions, thus furthering atomic

clocks, but also allowing for other basic research, e. g. the exploration quantum

phase transitions and many-body effects. The goal of this thesis is to contribute to

this young and rapidly developing field, by exploring possibilities of enhancing this

control and applying it to the implementation of quantum information processing

(QIP), another rapidly emerging field which harnesses the existence of superpositions

and long range entanglement to process information more rapidly than possible with

purely classical methods, as was shown in 1985 by D. Deutsch [6].

Alkaline-earth atoms are especially well suited for several of these applications,

due to their interesting properties, e.g. the existence of narrow intercombination

transitions. One of these transitions, the so-called clock transition, is particularly

suitable for the use in atomic clocks, due to its narrow linewidth on the order of tens

of mHz, and its oscillation frequency in the optical range. Thus, the quality factor
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Q = ν/∆ν of this transition is very high, promising a clock with very low fractional

instability, as can be seen from (1.1). For the implementation of this clock, alkaline-

earth atoms are trapped in an optical lattice and the clock transition is interrogated,

allowing for the most accurate clock with neutral atoms to date. Considering the

fact that it is possible to increase the number of atoms trapped in the optical lattice,

this clock has the potential to surpass the accuracy of the most accurate clock to

date, which is based on a single Hg+ ion [7, 8]. Additionally, the absence of hyperfine

interaction in the ground state allows for the storage of qubits in the nuclear spin of

the atoms, rendering the qubits well isolated and causing extremely long coherence

times. Furthermore, as I show in this dissertation, the narrow intercombination lines

provide for excellent control over the two-body interactions that are at the heart of

cold AMO physics, via optical Feshbach resonances. Additionally, I suggest a way of

laser cooling alkaline-earths that enables the preservation of nuclear spin coherences

and thus could prove very useful in the implementation of QIP.

In the following sections I will elucidate some background to AMO physics and

QIP. In the final section of this chapter, I will give an overview over this thesis.

1.1 Cold Atoms in Optical Lattices

Over the last decades, quantum control of cold atoms has been employed in many

different aspects of basic research. One major advancement was the trapping of

atoms in optical lattices [9]. These artificial crystals of single atoms can be used to

investigate the interactions between atoms as well as many-body effects and quantum

phase transitions. Furthermore, there are several proposals for the implementation

of quantum computation and quantum simulation in optical lattices [10, 11, 12, 13].

An optical lattice consists of two counterpropagating laser beams for each spatial

trapping dimension, which form a superposition of standing waves with opposite
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helicity given by

EL =
√

2E0 (cos (kLz + θ/2)ε+ + cos (kLz − θ/2)ε−) , (1.2)

where θ is the angle between the polarizations of the laser beams, E0 is the amplitude

of the electric field of the lasers, kL is the wavenumber of the lasers and z denotes

the direction of the laser beams, here chosen to be along the z-axis. Atoms in such

a standing wave experience a light shift of

U = −1

4
E∗L · α̂ · EL, (1.3)

where α̂ is the atomic polarizability. While the atomic polarizability generally con-

sists of a scalar, vector and second rank tensor part, for alkaline-earth-like atoms

which have no hyperfine interaction in the ground state, only the scalar part is rele-

vant. With more complicated laser configurations, it is possible to create much more

complicated and controllable optical lattices, as shown by Sebby-Stradley et al. [14].

This allows for the lattice geometry to be changed such that atoms are moved from

neighboring lattice sites into one double well or single well, where they can inter-

act more strongly. Due to this controllability, optical lattices have proven to be an

useful tool for basic research, in which many studies of scattering theory and phase

transitions have been realized. Noteworthy are, among others, the Mott-insulator to

superfluid transition, in which either the relative phase of the atoms or the number

of atoms per lattice site are well defined, depending on the specific parameters of the

optical lattice [15]. From a condensed matter physics perspective, ultracold atoms

trapped in optical lattices provide an ideal system for studying tight-binding models

such as the Hubbard model [9, 16, 17]. There are also interesting proposals for new

applications such as quantum simulators and universal quantum computers using

ultracold neutral atoms trapped in optical lattices [18].
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1.2 Quantum Information Processing

Quantum computing utilizes long range entanglement and coherences to speed up

some calculations compared to classical computers. To date, there are several known

quantum algorithms whose large scale implementation would significantly change

the world of computing, e.g. Grover’s algorithm, which allows to search unordered

datasets and Shor’s algorithm, which allows to factor big numbers exponentially

faster then any classical algorithm [6]. The latter is particularly important, since

most of todays encryption is based on the fact that it is very hard to factor big num-

bers. However, the growing field of quantum cryptography, in which eavesdropping

leads to detectable decoherence, offers the first and to date only encryption system

that is safe on purely physical grounds. Another very important application of this

is the simulation of quantum systems, which is hard classically, since the complexity

of quantum systems scales exponentially in the size of the system, as opposed to the

linear scaling in classical systems [6].

However, being based on quantum mechanical effects, quantum computing has

several requirements that are much harder to fulfill than the requirements for classical

information processing [6]. The first requirement for QIP is the existence of robust

qubits, which will not decohere too quickly, necessitating a system that interacts only

weakly with the environment. At the same time, we need the ability to subject the

qubits to quantum gates, which have to be fast relative to the coherence times, to

allow for many operations during the lifetime of the qubits. This requires the qubits

to interact strongly with each other and with some external control field. These

conditions are somewhat contradicory, since often the same interaction that allows

for manipulation of qubits also causes decoherence. Additional requirements are the

possibility of initialization of the qubits in a well-defined state, for which there are

promising avenues for neutral atoms in optical lattices, e.g. using the Mott-insulator

to superfluid transition [19] as well as readout of the qubits after the computation.
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The latter also requires the ability to suddenly turn on a strong interaction with the

environment. One possible realization for this is to use a fluorescence interaction on

a strong line selectively on different basis states of the qubit for which I will also

suggest an implementation.

Many different physical systems have been suggested for the implementation of

quantum information [6], e.g. nuclear spins in NMR systems, trapped ions, super-

conducting qubits, solid state systems such as quantum dots as well as photons in

cavities. As mentioned before, there are also several proposals for the use of neutral

atoms in optical lattices [10, 11, 12, 13]. As of yet, there are no systems that accord

truly scalable QIP, even though progress has been made in all of these systems.

In this thesis I will show that neutral alkaline-earth atoms in optical lattices as

carriers of quantum information are a very promising system that allows to circum-

vent the earlier mentioned contradiction. The reason for this is that the neutral

atoms in an optical lattice are well isolated from each other and from their environ-

ment. However, the rich possibilities of control and deformation of optical lattices

and the possibility to significantly increase the interaction strength between neutral

atoms due to Feshbach resonances, make strong interactions between selected atoms

possible. Furthermore, such arrays of optical traps provide a scalable platform for

storing many qubits, with parallel operations, applicable to the generation of clus-

ter states for one-way quantum computing [20], quantum-cellular automata [11, 20],

or more general quantum circuit operations [10], and fault-tolerance via topological

encoding [21].

Traditionally, the research on neutral atoms for QIP and quantum control has

focused on alkali atoms, owing to their good controllability after decades of research

based on this system. However, recently group-II and group-II-like atoms like Yb

have emerged as good candidates for the implementation of quantum information

processing [13, 22]. This is due to their convenient optical transitions, and rich

but tractable internal structure as well as the relative ease with which they can be
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trapped and cooled. Furthermore, the distinguishing feature of alkaline-earth-like

atoms is the fact that in the ground state the electron spins couple together to give

an angular momentum of zero, causing the nuclear spin to be decoupled from the

electronic degrees of freedom. As will be seen in this thesis, this allows for the storage

of the quantum information in the nuclear spin, which in turn affords not only the

optical recooling of qubits between and during the gates, but also very long coherence

times in spite of strong interactions and therefore fast gates and our ability to control

them with the mature tools of NMR [23].

The latter can be enhanced by the application of optical Feshbach resonances,

which are possible in alkaline-earth-like atoms, due to their very narrow intercombi-

nation transitions. These optical Feshbach resonances have the potential to enhance

basic research by adding another knob to the control of ultracold atoms, given their

faster controllability and and independence of hyperfine states compared to their

magnetic equivalent.

1.3 Alkaline-Earth-like Atoms

Alkaline-earth atoms, that is, atoms in the second column of the periodic table, have

two valence electrons. This is also true for Yb, the element 70, which is a rare-earth

element with the ground state configuration [Xe]4f 146s2. Since 14 is the maximum

number of electrons in the f shell, this shell is closed and the 6s2 electrons are the

valence electrons interacting with the environment, causing Yb to behave in the same

way as alkaline-earth atoms. Therefore, I will use the term alkaline-earth-like atoms

to refer to Yb and alkaline-earth atoms. Most of the work in this thesis has been

done on the example of Yb and Sr, however, in principle it is more general than

that and also applicable to other alkaline-earth-like atoms. In the ground state, the

spins of the two electrons couple together to give zero total electron spin. Since,

in the ground state, the electronic orbital angular momentum is also zero, the total
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angular momentum of the electrons also has to be zero and the ground state is 1S0,

and the only relevant spin is the nuclear spin. For the bosonic isotopes of Sr and

Yb, the nuclear spin is also zero, resulting in a completely spinless ground state.

However, both Sr and Yb have a multitude of different stable isotopes, with different

nuclear spins, including both fermions with finite nuclear spin and bosons. The stable

isotopes of Yb and Sr are given in table 1.1.

atomic nr. (Yb) i
168 0
170 0
171 1/2
172 0
173 3/2
174 0
176 0

atomic nr. (Sr) i
84 0
86 0
87 9/2
88 0

Table 1.1: The stable isotopes of Yb and Sr, i denotes the nuclear spin. For the
purposes of this thesis, the fermionic isotopes are relevant, specifically 171Yb and
87Sr.

In the excited states, the electron spins can be coupled together to give a finite

electron spin of s = s1 + s2 = 1, giving rise to triplet excited states, as for example

the (nsnp) 3Pj state, which is the lowest excited state, with n = 5 for Sr and n = 6

for Yb. Due to selection rules, direct coupling between singlet and triplet states is

forbidden. However, these states are not pure spin-orbit LS coupling, causing an

admixture of the higherlying (nsnp) 1P1 state, such that [7, 24]

|3P2〉 = |3P 0
2 〉 (1.4a)

|3P1〉 = α|3P 0
1 〉+ β|1P 0

1 〉 (1.4b)

|3P0〉 = |3P 0
0 〉 (1.4c)

|1P1〉 = −β|3P 0
1 〉+ α|1P 0

1 〉, (1.4d)

where the states with the superscript 0 denote states with pure spin-orbit coupling.
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Hence, the intercombination transition 1S0 → 3P1 is weakly allowed,

〈3P0|d · ε|3P1〉 = α〈3P 0
0 |d · ε|3P 0

1 〉+ β〈3P 0
0 |d · ε|3P 0

1 〉. (1.5)

where the first part on the right side is zero. This results in a line width of 182 kHz

for 171Yb and 80 kHz for 87Sr. The transition from the ground state to the 3P0 and

3P2 is additionally forbidden, since the selection rules for j require ∆j = 0, 1 and

j = 0 9 j = 0, causing lifetimes on the order of 1000 years for the metastable 3P0

state for the bosonic isotopes. For fermionic alkaline-earth-like elements, which have

half-integer nuclear spin, however, the hyperfine interaction couples the states with

equal total spin f and thus causes an additional admixture of the |3P1〉, |1P1〉 and

|3P2〉 states to the |3P0〉 state, resulting in

|3P0〉 = |3P 0
0 〉+ α0|3P1〉+ β0|1P1〉+ γ0|3P 0

2 〉. (1.6)

This reduces the lifetime of the clock transition, 1S0 → 3P0 to about 100 s for 87Sr and

to 10 s for 171Yb with its larger hyperfine interaction [24]. It is also possible to induce

a similar coupling with the application of a magnetic field or an additional laser and to

thus reduce the lifetime of the clock state of the bosonic elements [25, 26]. These long

lifetimes, in combination with easily accessible transition frequencies, have caused

the alkaline-earth-like elements to emerge in different areas of quantum control, most

notably in the implementation of atomic clocks, as pointed out in Section 1.

Due to the fact that their only spin is the nuclear spin, the Hamiltonian for the

|3P0〉 and the |1S0〉 state in the presence of a weak magnetic field B is given by

HZ = gSµB ŝ ·B/h+ gLµB l̂ ·B/h− gIµB î ·B/h (1.7)

Where µB is the Bohr magneton, gS ' 2 and gL = 1 are the g-factors for electron spin

and electron orbital angular momentum respectively, and gI is the nuclear g-factor.

In the absence of the small admixture of the |3P1〉 state to the |3P0〉 state, Eq. (1.7)

would reduce to −gIµB î ·B/h and the nuclear g-factor gI of the |3P0〉 state would be

exactly the same as for the |1S0〉 ground state. However, the coupling between the
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two states causes a small admixture of the electron g-factor to the nuclear g-factor.

This leads to a differential g-factor δg for the |3P0〉 state compared to the ground

state. For 87Sr, the difference in g-factors between the two states is about 60%. [24].

Furthermore, the quantum number for the Zeeman interaction for a magnetic field

along the z-axis is not pure mi any more, but mf , due to the small admixture of

the other states, causing the Zeeman shift to be δgmfµBB/h. This effect has to be

taken into account for applications in optical clocks as well as for coherent transfer

of population from different nuclear spin states in the ground state to the |3P0〉 state.

On the other hand, together with the extremely narrow linewidth of the |3P0〉 state,

this also allows for controlled excitation of different nuclear spin states independently

from each other, which makes complete control over the nuclear spin submanifold of

these states possible.

1.4 Overview of Thesis

This thesis aims to elucidate different aspects of control of ultracold atoms in opti-

cal lattices, focusing on controlled collisions and optical recooling while preserving

internal coherences. All these aspects could be useful in the application of quan-

tum information and, more generally, in basic research e.g. on many-body states.

In Chapter 2, I will give the theoretical background behind many of the calcula-

tions done in this thesis. Chapter 3 will show the possibility of recooling of neutral

alkaline-earth atoms, while preserving nuclear spin coherences. This makes neutral

alkaline-earth-like atoms with nuclear-spin qubits the only system of neutral atoms

that allows optical recooling of qubits between and during the implementation of

quantum gates, ensuring high fidelity of subsequent gates. Chapter 4 will elaborate

on the possibilities of using optical Feshbach resonances to control alkaline-earth-like

atoms and to speed up quantum gates. Finally, in chapter 5, I will summarize and

provide an outlook to open questions in the field.
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Several parts of this dissertation have previously been published, as is shown

in Table 1.2. Furthermore, I developed a quasi-Hermitian pseudopotential for the

calculation of higher partial-wave collisions. While the pseudopotential proposed

by R. Stock et al. [27, 28] is not Hermitian, it can still be used to calculate the

eigenenergies of atoms colliding via higher partial waves. However, it does not give

rise to acomplete, orthogonal set wave functions that can be used to expand possible

additional parts of an Hamiltonian. The quasi-Hermitian pseudopotential on the

other hand gives rise to a biorthonormal set of wave functions that can be applied

to this purpose. This research was published in [29], but is not shown here.

Chapter Publication

Chapter 3 I. Reichenbach and I. H. Deutsch
Sideband Cooling while Preserving Coherences in the Nuclear
Spin State in Group-II-like Atoms,
Phys. Rev. Lett. 99, 123001 (2007) [30]

Chapter 4 I. Reichenbach, P. S. Julienne and I. H. Deutsch
Controlling nuclear spin exchange via optical Feshbach
resonances in 171Yb,
accepted for Phys. Rev. A

– I. Reichenbach, A. Silberfarb, R. Stock and I. H. Deutsch
Quasi-Hermitian pseudopotential for higher partial wave
scattering
Phys. Rev. A 74, 042724 (2006) [29]

Table 1.2: List of publications and the corresponding parts of this dissertation, if
applicable.
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Chapter 2

Theoretical Background

In this dissertation I consider the manipulation of ultracold alkaline-earth-like atoms

trapped in optical lattices and their use in the implementation of quantum informa-

tion processing. Here, I will give some of the theoretical background which is the

basis of many of the calculations shown in later chapters.

At the fundamental level, quantum many-body systems are governed by their two-

body interactions. In the case of ultracold neutral atoms, these consist of collisions

determined by the diatomic molecular interaction potential. Therefore, in the first

section of this Chapter, I will give a general overview of scattering theory, which is

necessary to understand the scattering length, a very important parameter which

is manipulated with Feshbach resonances and is at the heart of the control scheme

proposed in Chapter 4.

In Section 2.2, I will show how ultracold collisions of atoms in optical lattices

can be controlled and how these controlled collisions of ultracold atoms can be used

to implement a quantum gate by utilizing the effects of symmetry and the Pauli-

exclusion principle.

In the last section, the molecular basis states used for the calculation of the
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optical Feshbach resonances in Chapter 4, as well as their transformations, will be

derived.

2.1 Scattering Theory

Scattering theory, which describes the effects of collisions of two or more particles on

their states, is a very important tool in theoretical physics. For this dissertation, it is

the basis for both controlled collisions and Feshbach resonances as used in Chapter

4. For this reason, I will give a short overview of scattering theory, limited to two

colliding particles in the center of mass frame or, equivalently, the scattering of one

particle off a stationary target. For more information, see the textbook by Taylor

[31].

Consider a scattering event that consists of two particles which interact via a

potential V (r) with finite range, colliding at time t = t0. At time t → −∞ the

incoming state |ψin〉 is outside of the range of the scattering potential V (r). However,

at time t0 it has moved into the range of the potential and has become the state

|ψ〉 = Ω̂+|ψin〉, (2.1)

where Ω+ is the Møller operator that embodies the evolution of the undisturbed

incoming state and

|ψ〉 = Ω̂−|ψout〉 (2.2)

describes the evolution from time t = t0 to the outgoing state |ψout〉 at time t→∞

that is again outside of the range of the interaction potential, with the corresponding

Møller operator Ω̂− [31].

Since usually, only the incoming and the outgoing state are known, it is advan-

tageous to cast the problem in terms of the so-called S-matrix, which describes the
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evolution from the incoming state to the outgoing state

Ŝ = Ω̂†−Ω̂+, (2.3)

such that

|ψout〉 = Ŝ|ψin〉 (2.4)

Therefore, the S-matrix connects the outgoing state after the scattering event to the

incoming state before the scattering event. Depending on the size of the relevant

Hilbert space, it can have many channels, denoting different possible internal and

external degrees of freedom of the two interacting particles.

It is also possible, and often more convenient, to describe the scattering process

in a time-independent picture. To do this, we expand the scattering states into the

basis of plane waves |p〉 = eipr, considering one of the colliding particles a stationary

target. The Møller operators acting on a plane wave state then yield the stationary

scattering states,

|p±〉 = Ω̂±|p〉. (2.5)

These states are improper eigenstates of the time-independent Hamiltonian

H|p+〉 = Ep|p+〉, (2.6)

and their wave function in position space is given by

〈x|p+〉 r→∞−−−→ (2π)3/2

(
eirp + f

eirp

r

)
, (2.7)

where f is the scattering amplitude. This gives a natural connection to the wave

mechanics of quantum theory, where the time-independent Schrödinger equation can

be used to solve problems with time-independent potentials. The scattering process

can now be described as a superposition of the incoming plane wave and a radial

wave that is scattered from the target.



Chapter 2. Theoretical Background 16

In many cases, the Hamiltonian and therefore the S-matrix are invariant under

rotation. In this case, we can define the stationary basis states with energy E, total

angular momentum l and projection of the angular momentum m in terms of the

spherical harmonics and a radial part

|E, l,m〉 = Rl(r)Y
m
l (θ, φ) (2.8)

The S-matrix is diagonal in the |E, l,m〉 basis

〈E ′, l′,m′|Ŝ|E, l,m〉 = δ(E ′ − E)δl′lδm′msl(p). (2.9)

Here sl(p) is the S-matrix for a given “partial wave” with well-defined total angular

momentum l. The radial part of the time independent Schrödinger equation (TISE)

becomes[
~2

2µ

d2

dr2
− l(l + 1)

r2
+ V (r)

]
Rl(r) = EkRl(r). (2.10)

Ultracold atoms can have a very long deBroglie wavelength, on the order of microns,

whereas the van der Waals interaction for alkali atoms is on the order of 1-10 Å[32].

in this case, the expansion in partial waves is very useful, due to the fact that the

kinetic energies are very small compared to the centrifugal barriers l(l + 1)/r2 for

higher l partial waves, which therefore do not interact and can be ignored. In fact,

very often it is sufficient to only take the first few partial waves, namely s and p

waves into account. This is due to the Wigner-threshold law, which states that for

low energies, the phase shift scales as δl(k) ∝ −k2l+1, where k is the deBroglie wave

number for the relative motion. Here δl is the scattering phase shift, which in turn

is given by

sl = ei2δl . (2.11)

For scattering from a short-range, radially symmetric potential, the effect of the

interaction is to phase shift the radial wave function. The stationary scattering

solutions are then given by

ψl,p(r)
r→∞−−−→ jl(pr) + pfl(p)e

i(pr−lπ/2), (2.12)
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where jl is a spherical Bessel function and fl is the scattering amplitude for partial

wave l, which can be written as

fl(p) =
1

p
eiδl sin (δl). (2.13)

The scattering phase shift δl denotes the amount by which a free stationary scattering

state is phase shifted due to the interaction process, as can be seen by inserting Eq.

(2.12) into Eq. (2.13), which yields

ψl,p(r)
r→∞−−−→ eiδl(p) sin (pr − lπ/2 + δl(p)) . (2.14)

In the context of cold atom scattering, the phase shift δl is often used to define the

scattering length, which is given as [28]

a2l+1
l = − lim

k→0

tan(δl)

k2l+1
(2.15)

In the Wigner-threshold regime, the scattering length is thus independent of the

energy. If the scattering potential V (r) was modeled as a hard-sphere interaction,

the scattering length gives the radius of the hard sphere. Its physical significance

arises from the fact that the strength of the interaction and whether it is attractive

(a < 0) or repulsive (a > 0) can be codified in a single parameter. Furthermore, it is

possible to replace the potentially very complicated interaction potential V (r) with a

zero-range pseudo-potential, where the only free parameter is the scattering length,

and obtain the same physical parameters [33, 28]. Even outside the Wigner-threshold

regime the complicated potential V (r) can often be replaced by a pseudopotential.

However, then the scattering length is not independent of k and a self-consistent

solution is needed [28, 34].

Generally, if all the different scattering states are accounted for, the S-matrix

must be unitary, Ŝ†Ŝ = 1. Moreover, sometimes the scattering process only causes

a phase shift between the different channels, thus the S-matrix is diagonal with a

phase for every channel. In this case, the scattering process in the different channels

is elastic, and the part of the wave function entering in one specific channel will stay
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in this channel. The individual diagonal S-matrix elements therefore square to one,

|Sα,α|2 = 1. However, in some cases the scattering produces loss from one or more

channels, and the diagonal elements of the S-matrix are not simple phases anymore.

The loss rate out of the this channel is then given by

K =
2π~
µk

(
1− |Sα,α|2

)
, (2.16)

with the diagonal matrix element of the S-matrix for channel α, Sα,α = 〈α|Ŝ|α〉.

Note that this is the loss rate for collisions of identical particles, for distinguishable

particles the loss rate is half of the value given in Eq. (2.16) [35]. We can account for

these losses by introducing a complex scattering phase shift, δ = δ′ + iδ′′. There are

different ways of defining the scattering length, which is also complex, and can be

written as a− ib, where the real part a defines the coherent part of the interaction,

while the imaginary part b is related to the loss rate. Assuming that δ is small, we

can use tan δ ≈ δ, and therefore a ≈ δ′/k and b ≈ −δ′′/k. Then it is also possible to

write

Ŝ = e2i(δ) ≈ 1 + 2i(δ) ≈ 1 + 2ika+ 2kb. (2.17)

This is the definition I will use in Chapter 4.

The scattering length can also be written in terms of the K-matrix, which is

given by

K̂ = i
1− Ŝ
1 + Ŝ

= tan δ (2.18)

The scattering length becomes then

a− ib =
i

k
K̂. (2.19)

Deep in the Wigner regime, where a is independent of k, the resulting scattering

length is the same. However, if the scattering length is not completely independent

of k, its definition is not unique and depends on the application at hand.
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2.2 Controlled Collisions in Quantum Information

Processing

Usually, even though scattering events are coherent, as can be seen from the unitarity

of the scattering matrix, collisions are viewed as inherently messy and intractable.

This is due to the huge number of possible channels that can participate in the

collision, even though all of the probability amplitude can emerge on one channel at

long range. However, for ultracold atoms, the number of partial waves and with it the

number of channels is greatly reduced, making it possible to keep track of the different

channels [36]. Confining ultracold atoms to a trap and then moving them together

in a controlled fashion, such that they can interact for a determined amount of time

constitutes a controlled collision. Due to their interaction, the energy of the atoms is

changed and causes the wave function to acquire a phase. This can be used for the

implementation of quantum information processing, if the collision acts selectively on

atoms in different states. There are several different ways of accomplishing this. One

possibility, which has been suggested for alkalis, is to encode the qubits in different

hyperfine states of ground state atoms, which are then trapped in a state-dependent

optical lattice. Changing the angle between the polarization of the optical lattice

beams then causes the atoms to move in the +z or −z direction, depending on their

internal state, until they collide with their next neighbors in the other hyperfine

state. A schematic of this process is shown in figure 2.1. This in turn can be used

to implement an entangling gate conditional on the states of the qubit and thus to

create a cluster state [28, 37].

Alkaline-earth-like atoms allow for a different scheme. As discussed in Section

1.3, in the ground state, their electronic degrees of freedom are decoupled from the

nuclear spins, making it possible to store the quantum information in the nuclear

spin, which leads to very long coherence times, due to the weak nuclear magnetic

moment and resulting weak magnetic dipole interaction. It is, however, still possible
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Figure 2.1: Schematics of the implementation of a state dependent controlled col-
lision with alkalis. Depending on their internal (hyperfine) state, the atoms are
trapped in optical lattices with different polarization. Changing the angle between
the counterpropagating laser beams changes the relative position between the lattices
and therefore the relative position of the atoms in different hyperfine states.

to accomplish relatively fast gates, by utilizing the effects of quantum statistics via

the so-called “exchange blockade” [13]. Since the nuclear spins are the only spins in

the ground state, they determine the quantum statistics of the system, allowing or

forbidding the interaction between different atoms. Consider two fermionic alkaline-

earth-like atoms, with a nuclear spin of i = 1/2 and quantum information stored

in the polarization of the nuclear spin in the usual way, |↑〉 = |0〉 and |↓〉 = |1〉,

trapped in two neighboring sites of an optical lattice. Now the atoms are brought

together to allow them to interact via a controlled collision. If the nuclear spins of

both atoms are up or down, they are in the spin triplet state. This state is symmetric
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under parity. Since the overall wave function has to be antisymmetric for fermions,

the overall spatial wave function has to be antisymmetric, requiring the atoms to

interact with odd partial wave functions, that is, only via p-wave collisions for cold

enough atoms

|0, 0〉 = |↑↑〉|Ψ−(x1, x2)〉 = |↑↑〉|Ψp−wave〉 (2.20a)

|1, 1〉 = |↓↓〉|Ψ−(x1, x2)〉 = |↓↓〉|Ψp−wave〉. (2.20b)

However, if one of the atoms is in the nuclear spin up state and the other one in

nuclear spin down, then they are in a superposition of spin triplet and singlet state,

|1, 0〉 =
1√
2

(|Ψ−(x1, x2)〉χT − |Ψ+(x1, x2)〉χS)

=
1√
2

(|Ψp−wave〉χT − |Ψs−wave〉χS) (2.21a)

|0, 1〉 =
1√
2

(|Ψ−(x1, x2)〉χT + |Ψ+(x1, x2)〉χS)

=
1√
2

(|Ψp−wave〉χT + |Ψs−wave〉χS) . (2.21b)

Here |Ψ±(x1, x2)〉 = |ΨA(x1)〉|ΨB(x2)〉± |ΨB(x1)〉|ΨA(x2)〉, where the subscript A,B

stands for the respective lattice site and the subscript 1, 2 stands for the respective

atoms. |Ψs−wave〉 |(Ψp−wave)〉 denotes that |Ψ±(x1, x2)〉 interacts via s-wave (p-wave)

collisions. Furthermore, χT/S = (|↑〉|↓〉 ± |↓〉|↑〉/
√

2. As shown by Hayes in [13],

depending on the temperature and on the relative scattering lengths for p-waves and

s-waves, the singlet nuclear spin part acquires a phase φ relative to the triplet in

such a controlled collision. The nuclear spin wave functions become then

|1, 0〉 → 1√
2

(
|Ψp−wave〉χT − e−iφ|Ψs−wave〉χS

)
(2.22a)

|0, 1〉 → 1√
2

(
|Ψp−wave〉χT + e−iφ|Ψs−wave〉χS

)
. (2.22b)

If now the acquired phase is φ = π, this results in a SWAP gate for the atoms.

Similarly, if the singlet wave function acquires a phase of π/2, the resulting gate is
√
SWAP , which is an entangling interaction. Thus it is possible to create entangling
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gates for nuclear spin qubits, utilizing effects of quantum statistics, even though the

nuclear spins never directly interact with each other [13]. As will be described in

chapter 4, the application of optical Feshbach resonances allows for separate control

of the p-wave scattering length relative to the s-wave scattering length and therefore

the relative phase, even independently of the temperature, as long as the atoms are

still cold enough to suppress higher partial waves.

2.3 Molecular States

The understanding of ultracold collisions and especially the modeling of optical Fes-

hbach resonances hinges critically on the understanding of the relevant molecular

potentials. To suppress higher partial waves, optical Feshbach resonances take place

at very low energies, equivalent to temperatures of few nK to tens of µK. Further-

more, to achieve a large overlap with the ground state scattering wave function,

only very long-range molecular states are considered. This results in molecules for

which the physical properties of the constituent atoms, e.g. spin and orbital angu-

lar momentum of the electrons are still tractable. Additionally, spin-orbit coupling

and even hyperfine interactions can be important on the energy scale of the molecu-

lar binding, whereas the chemical binding region for much shorter ranges and more

deeply bound molecules does not have to be modeled in detail and can be approxi-

mated with Lennard-Jones potential [39, 40]. The different molecular states are then

determined by the different couplings of the angular momenta of the atoms to each

other.

Throughout this dissertation, I will use the following notation. Each atom has

two electrons with a combined orbital angular momentum l, electron spin s, and

nuclear spin i. To differentiate between the angular momenta of the two atoms,

each of these angular momenta will have a subscript k = 1, 2, denoting atom 1 or 2.

Generally, lower case letters are used for angular momenta of single atoms, whereas
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capital letters are used for coupled molecular angular momenta. For example, the two

electron spins of the two atoms s1 and s2 can couple to the molecular electron spin

s1 +s2 = S. However, in another coupling scheme it is also possible that the electron

spin and the electron orbital momentum of atom 1 are coupled to give the total

electron angular momentum of atom 1, s1 + l1 = j1. An additional, very important

angular momentum is the rotation of the nuclei R, which is always perpendicular

to the line connecting the two nuclei. Finally, all the angular momenta are added

to yield a total angular momentum T that, together with the parity p, is always

a good quantum number. The details of the different couplings between the atoms

depends on the relative strength of the competing interactions between the angular

momenta and is summarized in the so-called Hund’s cases, which will be described in

the next section. Ignoring hyperfine interaction for the moment, there are only three

relevant interactions between the atoms [41]. These are the electrostatic interaction,

the spin-orbit interaction and the spin-rotation coupling. I will now summarize the

effects of each of these, assuming homonuclear dimers. ~ will be set to one in this

section.

The electrostatic interaction constrains the electronic wave function to rotate

with the nuclei. For two separated neutral atoms at large internuclear distances the

dominant interaction is given by a dipole-dipole interaction

Vdd =
1

4πε0

d̂1 · d̂2 − 3d̂1ad̂2a

R3
, (2.23)

where ε0 is the permittivity of vacuum, d̂k is the dipole of the state atom k, while

dka is the projection of the dipole along the internuclear axis a. In the ground state,

where both atoms are in a S state, the resonant-dipole interaction does not couple

the atoms. However, in second order perturbation theory a coupling appears, giving

rise to the C6/r
6 van der Waals interaction. We also consider electronic excited

states which, for infinite separation, consist of one atom in the ground state S and

another one in an excited P state, e.g. the 3P1 state for alkaline-earths. Neither of

these states has a dipole moment, however, if the atoms are close enough together,
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they will be in a superposition of S+P state. These superpositions do have a dipole

moment and will thus interact resonantly with each other, causing a C3/r
3 potential,

which is now dominant for large internuclear distances. The magnitude of the dipole

d can be calculated from the linewidth of the excited atomic state, via

Γ =
(ω
c

)3 d2

3πε0~
. (2.24)

Note that in the case mentioned above, there are four different possible configura-

tions of the dipoles to each other (perpendicular to the a-axis and either parallel

or antiparallel to each other or parallel to the a-axis and parallel or antiparallel to

each other), thus leading to four different r−3 potentials. The strength of the electro-

static interaction is denoted by |∆Edd|, which is the energy difference between two

neighboring Cn/r
n potentials [41].

The spin-orbit interaction couples the electronic spin s and the orbital angular

momentum l of each atom together, resulting in an effective interaction term

ASO (̂l1 · ŝ1 + l̂2 · ŝ2) = ASO/2(̂l21 + ŝ2
1 − ĵ2

1 + l̂22 + ŝ2
2 − ĵ2

2). (2.25)

Therefore, the spin-orbit coupling causes the electron spin and electron orbital angu-

lar momenta of the single atoms to be coupled to a total electron angular momentum

of the single atoms and its relative strength is given by the size of |ASO|.

The rotation of the nuclei gives rise to a magnetic field, which couples to the

spin of the electrons and thus gives rise to the spin-rotation coupling. This can be

expressed as CR · S, where C is a constant whose value depends on the rotational

constant B = ~2/(2µr2
0), with the reduced mass µ and the equilibrium distance

between the nuclei r0. The relative importance of the spin-rotation coupling is given

by the size of B relative to |∆Edd| and |ASO|. Due to the long range interactions

considered in this thesis and the big mass of both Sr and especially Yb, the rotational

energy usually is small here.
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2.3.1 Hund’s Cases

The coupling of the different angular momenta of the two atoms depends on the

relative strengths of the interactions explained above. F. Hund identified five different

limiting cases, which are now labeled Hund’s cases a) through e) [41]. However, for

the classification of ultracold colliding atoms used in this thesis, only three of them

are relevant. Since the relative strengths of the different coupling constants depend

on the relative distance between the nuclei, one and the same molecule can be in

different Hund’s cases for different distances between the nuclei.

The most relevant Hund’s case for this dissertation is Hund’s case c), in which

the relative sizes of the different coupling strengths is given by

|ASO| � |∆Edd| � B (2.26)

The result is that first the electron spin and the electron orbital angular momentum

for each atom are coupled together separately, that is, s1 + l1 = j1, s2 + l2 = j2. These

total electron angular momenta are then coupled together such that j1 + j2 = J.

Finally, J is coupled to the rotational angular momentum to give the total angular

momentum, J + R = T. Since R is perpendicular to the internuclear axis, its

projection is zero and the projection of T on the internuclear axis is the same as the

projection of J on the internuclear axis, Ω. Both T and Ω are good quantum numbers

as is MT , the projection of T on a space-fixed axis z, as will be explained in more

detail in Section 2.3.3. Additionally, the states are even (gerade) or odd (ungerade)

under inflection of all electrons through the center of charge. This symmetry is

denoted by σ = u/g. The states with Ω 6= 0 are doubly degenerate, whereas the

states with Ω = 0 are not degenerate and are even or odd under reflection of the

electron wave function on a plane through the internuclear axis. Therefore, Hund’s

case c) states are labeled

Ω±σ , (2.27)
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where the superscript ± denotes the latter symmetry and is only applicable for states

with Ω = 0.

In the context of cold collisions, Hund’s case e) is another important coupling

case. Here the different coupling strengths can be ordered as

|ASO| � B � |∆Edd|. (2.28)

In this case, the spin-orbit coupling dominates over the rotation, which in turn

dominates over the resonant dipole interaction. The electron spin of each atom is

again coupled with the orbital angular momentum of the electron to the total electron

angular momentum, s1 + l1 = j1 and s2 + l2 = j2, followed by the coupling of j1 and j2

to J = j1 +j2. Finally, J and the orbital angular momentum of the nuclei are coupled

together to give the total angular momentum T = J+R. In contrast to Hund’s case

c), Ω is not a good quantum number in Hund’s case e), because J does not precess

around the internuclear axis, due to the weak spin-rotation coupling. However, MT ,

the projection of T on a space-fixed axis is a good quantum number.

A third case, which I will describe for completeness because it is generally im-

portant for the description of ultracold atoms, even though it is not used in the

calculations shown here, is the Hund’s case a). This case is given by

|∆Edd| � |ASO| � B. (2.29)

In this case, the electron spin of the two atoms is coupled together to give a total

electron spin, S = s1+s2, and the electron orbital momentum is also coupled together

to a molecular orbital electron angular momentum, L = l1+l2. Both of these angular

momenta then precess around the internuclear axis, and the projection of S and L

on the internuclear axis, Σ and Λ are therefore also good quantum numbers. Due

to the spin-orbit coupling, L and S are now coupled to J, whose projection on the

internuclear axis, Ω = Λ + Σ is also a good quantum number. Finally, J and R

are again coupled to give T, whose projection is again equal to Ω. These states are
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again symmetric under inflection of all electrons through the center of charge, which

is denoted by σ = ±1 = g/u. Furthermore, the states with Λ = 0 have an additional

symmetry, they are even or odd under inflection of the spatial component of the

electron wave function on a plane including the internuclear axis. The molecular

eigenstates are then labeled by

2S+1Λ±σ , (2.30)

where the superscript ± signifies the last mentioned symmetry and is only applicable

in the case Λ = 0.

2.3.2 Including Nuclear Spin and Hyperfine Interaction

Since the main topic of this dissertation is the manipulation of nuclear spins with

controlled collisions, the Hund’s cases mentioned above have to be extended to in-

clude both the nuclear spin ik of the atoms as well as the hyperfine interaction, which

is given by

HHF = A(̂j1 · î1 + ĵ2 · î2) = A/2
(
f̂2
1 − î21 − ĵ2

1 + f̂2
2 − î22 − ĵ2

2

)
. (2.31)

The hyperfine interaction constant A is smaller than the spin-orbit coupling constant

ASO. For the Hund’s case c), there are thus several possibilities for the size of

the hyperfine interaction relative to |∆Edd| and B. For 171Yb, which has a large

hyperfine interaction and a large mass, it makes sense to consider the case in which

|A| � B. This reduces the extension of Hund’s case c) to two different possibilities,

|ASO| � |∆Edd| � |A| � B and |ASO| � |A| � |∆Edd| � B.

The first case,

|ASO| � |∆Edd| � |A| � B, (2.32)

is the one relevant in this thesis. Here, a total nuclear spin I = i1 + i2 is formed,

which precesses around the internuclear axis a and whose projection on that axis, ι,
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is a good quantum number. I and J are then coupled together to obtain the total

angular momentum (absent rotation) F, which is also precessing around a with the

projection Φ = Ω + ι. Finally, the total angular momentum T = F + R is formed,

with the same projection Φ along the internuclear axis. This is the extended Hund’s

case c) basis used in chapter 4, which can be written as

|γ〉 = |JΩIι;TΦMT 〉 =
∑

(JI)FΦ

〈(JI)FΦ|JΩIι〉|(JI)FΦ〉
√

2T + 1

4π
DT∗Φ,MT

. (2.33)

where DT∗Φ,MT
is the symmetric top wave function as explained in the next section.

For Hund’s case e), there are again several possibilities for the relative size of

the hyperfine interaction compared to the other interactions. The case used in this

dissertation is defined by

|ASO| � |A| � B � |∆Edd|, (2.34)

causing the following coupling of angular momenta: j1 + i1 = f1, j2 + i2 = f2. These

momenta are then coupled together to give F = f1 + f2, which rotates around the

internuclear axis with the projection Φ. Finally, F and R are again coupled to yield

the total angular momentum T.

2.3.3 Molecular States for Nuclear Rotation

So far, I have discussed the different coupling cases of the angular momenta and the

resulting good quantum numbers, but not the effects of the rotation of the nuclei on

the different other angular momenta. This will be explained in more detail in this

Section.

To this end, it is first necessary to consider the relevant coordinate systems for

diatomic molecules. One natural coordinate system for the manipulation of ultracold

molecules in a laboratory is a space-fixed coordinate system, with the axis labeled
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x,y and z. This coordinate system is especially important for the description of

external fields, which can be defined to be along one of these axes. An additional

coordinate system is fixed relative to the molecule. Ignoring the small effects of

the vibration of the nuclear spins, diatomic molecules can be described as rigid

rotors and are cylindrically symmetric, with one of the three principal axes of inertia

along the internuclear axis and the other two, with identical moments of inertia,

perpendicular to the internuclear axis. These axes of inertia define a natural body-

fixed coordinate system that is labeled a,b and c, such that a is along the internuclear

axis. Without loss of generality, we can chose the origin of the coordinate systems to

be at the same position, such they are simply rotated relative to each other. In the

Born-Oppenheimer approximation, the angular momenta of the electrons are defined

relative to the internuclear axis, thus we take the body-fixed coordinate system to be

the unrotated one. The space-fixed coordinate system is then rotated by the Euler

angles α, β, γ.

In the rigid-rotor approximation, the rotational eigenfunctions of the diatomic

molecule can be determined by solving the Schrödinger equation HTΨ = ETΨ, with

the Hamiltonian

HT =
Ĵ2
a

2Ia
+

Ĵ2
b

2Ib
+

Ĵ2
c

2Iz
. (2.35)

Since the moments of inertia in the two directions perpendicular to the molecular

axis are the same, the molecule can be described as a symmetric, prolate top with

Ia < Ib = Ic [42]. Thus, the Hamiltonian can be written as

HT =
Ĵ2

2I
+ Ĵ2

a

(
1

2Ia
− 1

2I

)
. (2.36)

This Hamiltonian forms a mutually commutative set of operators with Ĵ2 and the

component of J along the body-fixed a-axis Ĵa = ∂/∂α. Furthermore, HT commutes

with the component of J along the space-fixed z-axis Ĵz = ∂/∂φ, due to the fact

that Ĵz acts on an angle independent of the one that Ĵa acts upon. Thus, both the

projection of J along a, which will be denoted with a Greek letter, Ω as well as its
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projection along z, which will be called MJ , are good quantum numbers. Figure 2.6

shows the orientation of J relative the different axes for a symmetric top.

The set of 2J+1 eigenfunctions of angular momentum ΨJ,M(0, 0, 0), where (0, 0, 0)

denote the Euler angles, which are all zero for the unrotated basis, can now be

evaluated in the rotated coordinate system with the help of the rotation matrices

[43]

D(α, β, γ) = e−iαĴze−iβĴye−iγĴz (2.37)

These matrices are unitary, D†D = 1. The magnitude J of the angular momentum

J is independent of the direction of the coordinate system. However, the value of

the projection of J on the a axis, M depends on the direction of the coordinate

system. Since both the rotated and the unrotated eigenfunctions form a complete

basis, the unrotated eigenfunctions can be expressed as a superposition of the rotated

eigenfunctions

ΨJ,M(0, 0, 0) =
∑
M ′

DJM ′,M(α, β, γ)ΨJ,M ′(α, β, γ), (2.38)

where DJM ′,M(α, β, γ) signify the matrix elements of the rotation matrices D(α, β, γ),

〈J,M ′|D(α, β, γ)|J,M〉 = DJM ′,M(α, β, γ). (2.39)

Since the rotation matrices are unitary, this can be solved for the rotated wave

functions ΨJ,M ′(α, β, γ),

ΨJ,M ′(α, β, γ) =
∑
M

DJ∗M ′,M(α, β, γ)ΨJ,M(0, 0, 0). (2.40)

The eigenfunctions |J,Ω,MJ〉 of the symmetric top can now be expressed given

in terms of the rotation matrix elements, DJ∗Ω,MJ
[44]

〈α, β, γ||J,Ω,MJ〉 =

√
2J + 1

4π
DJ∗Ω,MJ

(α, β, γ) (2.41)

This is used for the molecular basis states for Hund’s case c), as seen in Eq. (2.33).
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2.3.4 Transformation between Basis States

To obtain the transformation between the Hund’s case c) and e) basis states, I first

transform |FRTMT 〉 into the symmetric top wave functions in the following way.

First consider an uncoupled state with |F,MF 〉|R,MR〉 in the space fixed basis state,

which can be expressed as

|F,MF 〉ω|R,MR〉ω =
∑
Φ,ν

DFMF ,Φ
(ω)|F,Φ〉0DRMR,ν

(ω)|R, ν〉0 (2.42)

where the coordinate system of the different states is denoted with a subscript and

the Euler angles for the body-fixed coordinate system α, β, γ are abbreviated as ω,

while the Euler angles for the space-fixed coordinate system are 0, 0, 0, which is

abbreviated with 0. Using now the properties of the Y m
l and [43, 45]

|R, ν〉0 = Y ν
R (0) =

√
2R + 1

4π
δν,0, (2.43)

I obtain

|F,MF 〉ω|R,MR〉ω =
∑

Φ

|FΦ〉0DFMF ,Φ
(ω)DRMR,0

(ω)

√
2R + 1

4π
. (2.44)

The two rotation matrix elements can be contracted to yield [43]

|F,MF 〉ω|R,MR〉ω =
∑

Φ

∑
T

√
2R + 1

4π
〈FMFRMR|TMT 〉

× 〈FΦR0|TΦ〉DT∗MT ,Φ
|FΦ〉0 (2.45)

Now I want to couple |F,MF 〉ω|R,MR〉ω to |FRT ′M ′
T 〉ω via the Clebsch Gordan

coefficients.

|FRT ′M ′
T 〉ω =

∑
MF ,MR

〈FMFRMR|T ′M ′
T 〉|F,MF 〉ω|R,MR〉ω. (2.46)

Inserting Eq. (2.44) into Eq. (2.46) and using the properties of the Clebsch Gordan

coefficients [45]∑
MF ,MR

〈FMFRMR|T ′M ′
T 〉〈FMFRMR|TMT 〉 = δT,T ′δMT ,M

′
T

(2.47)
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I obtain

|(f1f2)FRTMT 〉ω =
∑

Φ

〈FΦR0|TΦ〉
√

2R + 1

4π
DT∗MT ,Φ

|(f1f2)FΦ〉ω. (2.48)

Using now the definition of the normalized eigenfunction

|FTΦMT 〉 =

√
2T + 1

4π
DT∗MT ,Φ

|FΦ〉, (2.49)

analogous to Eq. (2.41), finally yields the transformation between the eigenstates

along the space-fixed z axis and the symmetric top eigenfunctions

|(f1f2)FRTMT 〉ω =
∑

Φ

〈FΦR0|TΦ〉
√

2R + 1

2T + 1
|(f1f2)FTΦMT 〉0. (2.50)

Here the notation (f1f2)F serves as a reminder that in Hund’s case e) the atomic

angular momenta are coupled in the following way. j1+i1 = f1, j2+i2 = f2 and finally

f1 + f2 = F. In the extended Hund’s case c) basis, on the other hand, j1 + j2 = J,

i1 + i2 = I and I + J = F. Additionally using the fact that for alkaline-earth-like

atoms j2 = 0, such that J = j1 and f2 = i2, the transformation between |(f1f2)FΦ〉

and |(IJ)FΦ〉 is given by a Wigner 6j symbol [45]

〈(f1f2)FΦ|(IJ)F ′Φ′〉 =δF,F ′δΦ,Φ′(−1)j1+i1+i2+F
√

(2f1 + 1)(2I + 1) j1 i1 f1

i2 F I

 . (2.51)

Combining Eqs. 2.33, 2.50 and 2.51 with identity

|JΩIι〉 =
∑
FΦ

〈FΦ|JΩIι〉|FΦ〉 (2.52)

finally yields the desired transformation between |γ〉 and |ε〉

〈γ|ε〉 =〈FΦR0|TΦ〉
√

2R + 1

2T + 1
〈JΩ, Iι|FΦ〉

(−1)j1+i1+i2+F
√

(2f1 + 1)(2I + 1)

 j1 i1 f1

i2 F I

 . (2.53)
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Figure 2.2: State-independent optical lattices for the manipulation of neutral atoms.
Plot of flexible optical lattices used in experiments at NIST. The single wells can be
transformed into double wells, a) to d) show different configurations for the different
double wells. The pictures 1-4 show how two atoms in neighboring wells can be
moved together in one lattice site, by first merging the two wells to a double well
and then transforming the double well to a single well. Figures are taken from [38]
and [14], respectively.
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Ω

j1

j2

J

T
R

Figure 2.3: Schematics of Hund’s case c) coupling. j1 and j2 are coupled to give J,
which precesses around the internuclear axis and couples together with R to give the
total angular momentum T. The projection of J and T on the internuclear axis, Ω,
is a good quantum number.
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j1

j2

J

T

R

Figure 2.4: Schematics of Hund’s case e) coupling. j1 and j2 are coupled to give
J, which couples together with R to give the total angular momentum T. The
difference between case e) and case c) is that T is not constrained to process around
the internuclear axis, thus its projection Ω on the internuclear axis is not a good
quantum number. However, its projection on a space fixed axis, MT , is a good
quantum number.
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Ω

L S

J

T R

Λ Σ

Figure 2.5: Schematics of Hund’s case a) coupling. L and S are constrained to precess
around the internuclear axis, due to the strong spin-rotation coupling. They couple
together to give J, which therefore also precesses around the internuclear axis and
couples together with R to give the total angular momentum T. The projections
of L,S,J and T on the internuclear axis, Λ,Σ,Ω and Ω, respectively, are all good
quantum numbers.



a

z

Figure 2.6: The classical motion of a prolate symmetric top, where a is the body-
fixed axis while z denotes the space-fixed axis. The two cones rotate around each
other without slipping, while the top rotates with angular momentum ω. Compare
to [42].
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Chapter 3

Cooling Atomic Vibration without

Decohering Qubits

3.1 Theoretical Background

From the perspective of storing and manipulating quantum information, nuclear

spins in atoms are attractive given their long coherence times, the mature techniques

of NMR [23] and the collisional gate based on the exchange blockade as described

in Section 2.2. However, as is typical in atomic quantum logic protocols, heating

of atomic motion degrades performance and coherence times. Since qubits usually

experience heating in the process of quantum gates, a truly scalable quantum com-

puter, requiring many such gates necessitates the ability to recool qubits between or

during quantum gates, without disturbing their coherence.

In atoms with group-I-like electronic structures, the qubits are usually stored in

hyperfine levels or other electronic spin states. Therefore, laser cooling cannot be

used to re-initialize atomic vibration in the course of quantum evolution because

this is accompanied by optical pumping that erases the qubit stored in these internal
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degrees of freedom. One must therefore resort to sympathetic cooling with another

species. This cooling mechanism has been successfully used for trapped ions, in

which case two or more ions (one cooling ion and one or more qubit-storing ions) are

in a collective motional mode, and the cooling ion is then laser cooled. Due to the

coupling of the motional mode, the qubit ion(s) are also cooled [46]. Preservation of

the coherence of the qubit(s) can be achieved by either focusing the cooling beam

enough to only illuminate the cooling ion, or by using another species of ions, whose

cooling linewidth is sufficiently detuned from transitions in the qubit species, for the

cooling ion. The lack of long range interactions in neutral atoms, while increasing

their coherence times, also make this form of sympathetic cooling impossible. A way

of implementing sympathetic cooling is to immerse the neutral atoms in a BEC of

another species that acts as a bath, dissipating vibrational motion via the excitation

of phonons [47]. However, this requires the addition and control of a BEC to the

experiment, thus complicating the setup.

For alkaline-earth-like atoms, on the other hand, one can continuously refriger-

ate atomic motion while simultaneously maintaining quantum coherence stored in

nuclear spins, as I will show in this Chapter. The proposed protocol is based on

resolved-sideband laser cooling [48] of group-II-like atoms, tightly trapped in the

Lamb-Dicke regime, as in optical lattices currently under consideration for next-

generation atomic clocks based on optical frequency standards [49]. The cooling

scheme will be explained in detail using two example species, 171Yb and 87Sr, both of

which are actively studied in the laboratory for application to optical clocks [50, 51].

The i = 1/2 nucleus of 171Yb is a natural qubit for storing quantum information. In

the case of 87Sr, whose nucleus has spin i = 9/2, two sublevels in the 10-dimensional

manifold can be chosen to encode a qubit. Exquisite optical control of the nuclear

spin of 87Sr has recently been demonstrated by Boyd et al. [52, 24].

In order to preserve the quantum state of a qubit encoded in a nuclear spin while

laser cooling, the spin coherences must be coherently transferred in both excitation
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and spontaneous decay. Optical fields interacting with atoms via the electric dipole

couple directly to the electrons, affecting nuclear spin states only indirectly via the

hyperfine interaction. A key requirement of our protocol is, therefore, to excite states

with negligible hyperfine coupling, and/or to decouple electrons from nuclear spin

through the application of a sufficiently strong magnetic field that the Zeeman effect

on the electrons dominates over the hyperfine interaction (Paschen-Back regime [53]).

Moreover, we seek to recool atoms in traps to near the ground vibrational state which

requires resolvable motional sidebands, as will be reviewed in the next section.

3.1.1 Resolved Sideband Cooling

In this section, I will give an overview of the well known [54, 55] and frequently

used [56, 57] resolved sideband cooling, which is at the heart of our cooling scheme.

Consider a two-level atom, that is tightly confined in a harmonic oscillator with the

trap frequency ω, which is identical for both the excited state |e〉 and the ground

state |g〉, achievable by trapping the atom in a deep optical lattice at the “magic

wavelength”, such that the two states see the same optical potential. The overall

state is then a product state between the internal state of the atom, |g〉 or |e〉, and

the vibrational state of the trap, |n〉. Under the condition that ω � Γ, where Γ is

the linewidth of |e〉, the different vibrational states of the trap, that is the sidebands,

are resolved.

Assuming a one dimensional trap and an incoming plane wave in the same direc-

tion x, the overall Hamiltonian is given by

H = HA +HAL +HT , (3.1)

where HA is the Hamiltonian describing the internal states of the two-level atom,

HAL is the Hamiltonian of the atom-laser interaction and HT gives the harmonic



Chapter 3. Cooling Atomic Vibration without Decohering Qubits 40

oscillator trap. The atomic Hamiltonian can be written as

HA = ωg|g〉〈g|+ ωe|e〉〈e| (3.2)

Shifting the zeropoint of energy by −~(ωe +ωg)/2, and defining ω = (ωe−ωg)/2, we

obtain

HA = ~
ω

2
(|e〉〈e| − |g〉〈g|) = ~

ω

2
σz, (3.3)

where σz is the Pauli matrix [58]. The trapping Hamiltonian is a harmonic oscillator

with oscillation frequency ν, where the â and â† are the annihilation and creation

operators for vibrational excitation in the trap,

HT = ~ν
(
â†â+

1

2

)
. (3.4)

The incoming plane wave can be written as

E(x, t) = E0εL
[
ei(kx̂−ωLt+φ) + e−i(kx̂−ωLt+φ)

]
, (3.5)

where εL is the polarization direction of the incoming wave, while E0, ωL and φ

are its amplitude, frequency and phase. In the dipole approximation, the interaction

Hamiltonian HAL can then be written as HAL = −(d̂ ·εL)E0[exp(kx−ωLt+φ)+c.c.],

which can be expanded in terms of the atomic eigenstates as

(d̂ · εL) = 〈e|d̂ · εL|g〉|e〉〈g|+ 〈g|d̂ · εL|e〉|g〉〈e| = −deg(|e〉〈g|+ |g〉〈e|), (3.6)

where deg = 〈e|d̂ · εL|g〉 = 〈g|d̂ · εL|e〉∗ = 〈g|d̂ · εL|e〉 is the dipole matrix element.

Defining now the Rabi frequency Ω = 2degE0/~ and using the identity of the Pauli

matrices, |e〉〈g| = σ̂+ and |g〉〈e| = σ̂−, the interaction Hamiltonian becomes

HAL = −~Ω

2
(σ+ + σ−)

(
ei(kx̂−φ)e−iωLt + e−i(kx̂−φ)eiωLt

)
. (3.7)

To further simplify this Hamiltonian, it is useful to go to a rotating frame, trans-

forming the Hamiltonian with

H̃ = D̂†HD̂ + i~
∂D̂†

∂t
D̂, (3.8)
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where D̂ = exp[−(i/~)(HT +HA)t] = exp[−i(ωσzt/2 + ν(â†â + 1/2))]. For the

interaction Hamiltonian, this yields

H̃AL =D†HALD = −~Ω

2
e−i(ω/2)σzt(σ+ + σ−)ei(ω/2)σzt

× e(i/~)HT t
(
ei(kx̂−φ)e−iωLt + e−i(kx̂−φ)eiωLt

)
e−(i/~)HT t. (3.9)

Now we use that ei(ω/2)tσzσ±e
−i(ω/2)tσz = e±iωtσ±. Furthermore, since the atom is

trapped, x̂ = x0(â+ â†) and the second part of the transformation amounts to going

to the Heisenberg picture with

e(i/~)HT tâe−(i/~)HT t = âe−νt. (3.10)

Therefore, the interaction Hamiltonian in the rotating frame is given by

H̃AL =− ~Ω

2

[
σ+e

−i(ω−ωL)t exp[ikx0(âe(−iνt) + â†e(iνt)]e−iφ

σ+e
−i(ω+ωL)t exp[−ikx0(âe(−iνt) + â†e(iνt)]eiφ

]
+H.c. (3.11)

The two parts of the Hamiltonian have very different resonance frequencies, the first

part oscillates slowly with the detuning of the laser from the resonance frequency

δ = ω−ωL, while the second part oscillates rapidly with ω+ωL. In the rotating wave

approximation the second part can be neglected, so that the interaction Hamiltonian

finally becomes [55]

H̃AL =
~Ω

2
σ+ exp

(
iη
(
âe−iωt + â†e−iωt

))
ei(φ−δt) +H.c., (3.12)

where

η = kx0 =

√
ER
~ν

(3.13)

is the Lamb-Dicke parameter with the recoil energy ER = (~k)2/2m. In the Lamb-

Dicke regime, where the confinement is tight and η � 1, this Hamiltonian can be

expanded in lowest order in η and be written in the form [55]

H̃AL = Hcar +Hrsb +Hbsb, (3.14)
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where the zeroth-order part of the Hamiltonian,

Hcar =
~Ω

2

(
σ+e

iφ + σ−e
−iφ) (3.15)

describes the carrier resonance, which couples the atomic excited and ground state to

each other, without changing the vibrational frequency of the trap, |g〉|n〉 ↔ |e〉|n〉.

The first-order part of the Hamiltonian consists of two different parts, the first of

which is the red sideband Hamiltonian

Hrsb =
~Ω

2
η
(
âσ+e

iφ + â†σ−e
−iφ) , (3.16)

which describes transitions from ground to excited state, reduced by one quantum

of vibration, |g〉|n〉 ↔ |e〉|n− 1〉. It gives rise to a resulting Rabi frequency of

Ωn,n−1 = Ωη
√
n. (3.17)

The second first oder term of the Hamiltonian is the blue sideband Hamiltonian

Hbsb =
~Ω

2
η
(
â†σ+e

iφ + âσ−e
−iφ) , (3.18)

which gives rise to transitions |g〉|n〉 ↔ |e〉|n+ 1〉, with a Rabi frequency of

Ωn,n+1 = Ωη
√
n+ 1. (3.19)

If the Rabi frequency and the linewidth are now small enough, such that the

sidebands are resolved during the excitation, Ωn,m,Γ� ω, it is possible to resonantly

excite the atoms on the first red sideband, |g〉|n〉 → |e〉|n− 1〉 while not exciting the

carrier or other sidebands. However, to the degree to which the system is in the

Lamb-Dicke regime where η � 1, decay from the excited state will predominantly

be on the carrier, |e〉|n−1〉 → |g〉|n−1〉, which is zeroth order in η. Since the resulting

transition yields |g〉|n〉 → |g〉|n− 1〉, this can be used to cool the vibrational state of

the trapped atoms by repeating this cycling transition. The rate Rn for this process is

found by determining the probability of the atom to be in the excited electronic state
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multiplied with the decay rate. This can be calculated using the master equation in

Lindblad form for the two levels of the atom, which has the following form

ρ̇ = − i
~

[H, ρ] + Lρ. (3.20)

The first part of the equation, − i
~ [H, ρ] describes the unitary evolution while Lρ

describes spontaneous emission and can be expressed as [59]

Lρ = − Γ̃

2
(σ+σ−ρ+ ρσ+σ− − 2σ−ρσ+), (3.21)

where Γ̃ is a general linewidth. Using a general Hamiltonian, similar to (3.15), but

with a detuning δ and a general Rabi frequency Ω̃, the resulting equations for the

density matrix are

ρ̇ee = −ρ̇gg = −Γ̃ρee + i
Ω̃

2
Imρge (3.22a)

ρ̇ge =

(
−iδ − Γ̃

2

)
ρge − Ω̃(ρee − ρgg) (3.22b)

In the steady state, in which ρ̇ = 0, we can solve for the populations

ρge = − iΩ̃/2

iδ + Γ̃/2
(ρee − ρgg) (3.23a)

ρee = −Ω̃

Γ̃
Imρge =

−Ω̃2/4

δ2 + Γ̃2/2
(2ρee − 1) =

Ω̃2

Γ̃2 + 2Ω̃2 + δ2
(3.23b)

For excitation on the red sideband, the general Rabi frequency Ω̃ from (3.23b)

becomes Ωn,n−1 = Ω
√
nη (see Eq. (3.17)), the general linewidth Γ̃ becomes the

natural linewidth of the excited state Γ, and the detuning δ = 0. Therefore, the rate

Rcool for this process is given by

Rcool = Γ̃ρee = Γ
Ω2
n,n−1

Γ2 + 2Ω2
n,n−1

= Γ
Ω2nη2

Γ2 + 2Ω2nη2
≈ Ω2nη2

Γ
. (3.24)

It can be seen that the ground vibrational state is a dark state.

Heating of the ground state is possible in two different ways, the first of which

is off-resonant excitation (δ = ω) on the carrier with Ω̃ = Ω0,0, followed by decay
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on the blue sideband. Since this decay changes the vibrational state of the atom,

the linewidth is reduced by the square of the Lamb-Dicke factor and is therefore

Γ̃ = η̃2Γ (where η̃ is the Lamb-Dicke parameter for decay, slightly different from η

for geometrical reasons [55]). Again using R = Γρee, the rate for this heating process

is

Rheat,1 = Γ̃
Ω2

0,0

Γ̃2 + 2Ω2
0,0 + 4δ2

≈ η̃2Γ
Ω2

4ω2
. (3.25)

The other heating process is off-resonant excitation (δ = 2ω, Ω̃ = Ω0,1) on the blue

sideband and decay on the carrier, for which the rate is [55]

Rheat,2 = Γ
Ω2

0,1

Γ2 + 2Ω2
0,1 + 4δ2

≈ Γ
(ηΩ)2

4(2ω)2
. (3.26)

All other heating mechanisms are of higher order in the Lamb-Dicke parameter and

can therefore be neglected. Since the overall heating rate Rheat = Rheat,1 + Rheat,2,

the resulting rate equations for the ground and first excited vibrational state are

given by

ṗ0 = p1Rcool − p0Rheat = p1
(ηΩ)2

Γ
− p0

[(
Ω

2ω

)2

η̃2Γ +

(
ηΩ

4ω

)2

Γ

]
, (3.27)

ṗ1 = −ṗ0.

This results in an average excitation number of

〈n〉 ≈ p1 ≈
(

Γ

2ω

)2
[(

η̃

η

)2

+
1

4

]
, (3.28)

assuming the system to be in steady state and using ω � Γ. The factor in brackets

is of order one. Eq.(3.28) shows that resolved sideband cooling can lead to very low

temperatures for forbidden lines, which will be used in the cooling scheme.

3.2 Description of the Proposed Cooling Scheme

The dual requirement of very narrow linewidths and small hyperfine coupling leads us

to consider cooling on the weakly allowed intercombination “clock” transition 1S0 →
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3P0 in a “magic wavelength” optical lattice [49]. Cooling to the ground vibrational

state can proceed by coherent excitation of a π pulse on the first red sideband,

|1S0, n〉 → |3P0, n − 1〉, where n is the vibrational quantum number, followed by

recycling to the ground state with Lamb-Dicke suppression of recoil.

3.2.1 Resolved Sideband Cooling on the Clock Transition

Our concern is to carry out this cooling while maintaining nuclear spin coherence. To

good approximation, the 3P0 state has total electron angular momentum j = 0, and

under this condition, there is no interaction between electrons and nuclear spin, as

in the ground state, |1S0〉. However, the clock transition is j = 0→ j = 0, and laser

excitation is only allowed because in the excited state, the hyperfine interaction leads

to a small admixture of the higher-lying P states as described in 1.3. The nuclear

spin projection mi is thus not an exact quantum number for the magnetic sublevels

in |3P0〉; a very small admixture of electronic angular momentum renders mf a good

quantum number. This leads to two effects which we must address in the context

of transferring the nuclear spin state. While the clock transition is only allowed due

to the hyperfine interaction, it is still the case that the sublevels of |3P0〉 are almost

pure mi, and a π-polarized pulse will preserve nuclear spin projections in excitation

on the clock transition [24]. More importantly, even a small admixture of electron

angular momentum can strongly affect the magnetic moment, so that the g-factor of

the excited state differs from that of the ground state [52]. This implies that in a bias

magnetic field, the π-transitions |1S0, n〉⊗ |mi〉 → |3P0, n− 1〉⊗ |mf = mi〉 will have

different resonant frequencies for different values of mi. The protocol for the transfer

of nuclear spin coherence from the ground state to the clock state will thus depend

on the details of the experimental conditions, i.e., the relative size of the differential

Zeeman splitting in the given bias field when compared to the vibrational spacing

in the trap. Under any operating condition, these coherences can be transfered due

to the extremely narrow linewidth of the clock transition, be it through sequential
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addressing of each sublevel in a series of narrow band pulses [52], or in a short pulse

that does not resolve the differential Zeeman shift but does resolve the sidebands.

Finally, in this step, one must also take into account that the differential g-factor leads

to differential relative phases between the sublevels; this is a unitary transformation

which can be reversed.

Once the atom is transferred to the clock state 3P0, the cooling cycle must be

completed through a spontaneous event that returns the atom to its ground electronic

state 1S0, with Lamb-Dicke suppression of recoil. Of importance in our protocol is

that this occurs without decoherence of the nuclear spin state. The key require-

ment for spontaneous transfer of coherences is that the decay paths of the different

sublevels are indistinguishable, i.e. the decay channels cannot be distinguished by

their polarization or frequency. Under circumstances in which the nuclear spin and

electronic degrees of freedom of an excited state are decoupled (no hyperfine in-

teraction), in a product state with zero projection of electron angular momentum,

|e〉 ≈ |i,m′i〉 ⊗ |j′,m′j = 0〉, all decay channels to the ground state are indistin-

guishable. To see this, note that the selection rules dictate that the electric dipole

matrix element satisfies, 〈e|dq|g〉 = 〈j′,m′j = 0|d0|j = 0,mj = 0〉δq,0δmi,m′
i
. Only

π-transitions are allowed and all decay channels have the same polarization without

change of nuclear spin projection. Moreover, in the m′j = 0 manifold, the g-factor

is solely nuclear, gI , equivalent to that in the ground state. Thus, the Zeeman

splitting in excited and ground states will be equal and decay channels will not be

distinguished by frequency. Deviations of the excited state from a nuclear-electron

product state (due to residual hyperfine interaction) will lead to decoherence when

there are nuclear spin changing decays (polarization distinguishable) and/or when

the different channels are frequency resolvable (i.e. have a frequency difference that

is not negligible compared to the decay linewidth).

In the case of the clock state 3P0, spontaneous decay is completely due to the

admixture of higher P states and the decay channels with different polarizations
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occur with a probability proportional to the respective Clebsch Gordan coefficients.

Therefore, the nuclear spin is not preserved during spontaneous decay. Moreover,

the long lifetime makes the cooling cycle too long for practical purposes. We thus

consider quenching the clock state by pumping to the short lived 1P1 state (see

Fig. 3.2) [60, 61]. This level decays with very high probability to the ground state

1S0 and has a very broad linewidth, Γ/(2π) > 10 MHz. Direct excitation 3P0 →
1P1, is weakly magnetic-dipole-allowed, and has been considered in the context of

electromagnetically induced transparency [26]. Alternatively, we can quench the

clock state via a two-photon 3P0 → 3S1 → 1P1(mj = 0) transition, off resonance

from the intermediate state. This has the advantage that, though one leg is an

intercombination line, all transitions are electric-dipole allowed, leading to larger

depopulation rates for the same intensity.

3.2.2 Quenching of a Metastable State via a Rapidly Decay-

ing State

For the aforementioned reasons, the proposed cooling scheme requires quenching with

a rapidly decaying state. Therefore, in this section, I will discuss different schemes to

quench a metastable excited state |2〉 with a rapidly decaying excited state |3〉, which

has a very large decay rate Γ and decays only to the ground state |1〉. The energy

of state |i〉 = ~ωi, where the ground state energy is set to zero, ω1 = 0. For our

purposes, |1〉 = |1S0〉, |2〉 = |3P0〉 and |3〉 = |1P1〉. There are two different ways of

achieving quenching, one can either dress the metastable state via a continuous-wave

laser with the excited state |3〉, thus broadening its lifetime, or one can coherently

transfer the population from |2〉 to |3〉 and let |3〉 decay back to the ground state.

Here I want to elucidate these different schemes if the Rabi frequency Ω with which

we can couple |2〉 and |3〉 is small compared to Γ, and to estimate required intensities

for implementation of the processes.
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Continuous wave

Consider the excited subspace consisting of states |2〉 and |3〉, which are magnetic-

dipole coupled to each other with a laser resulting in the Rabi frequency Ω =

|〈3|µ̂|2〉|B0/~, where B0 is the magnetic field and µ̂ is the magnetic dipole moment.

For Sr, µ̂ = 0.022µB [26], while the value for Yb has not been determined, but is

expected to be of similar magnitude. The Hamiltonian of this system in the rotating

frame, after applying the rotating wave approximation is similar to the Hamiltonian

for the carrier, Eq. (3.15)

H =
~Ω

2

(
σ+e

i(φ−iδt) + σ−e
−i(φ−δt)) . (3.29)

where δ is the detuning of the dressing laser. Following [26], the resulting equations

of motion are

ċ2(t) = −iΩ
2
eiδtc3(t) (3.30a)

ċ3(t) = −iΩ
2
eiδtc2(t)− iΓ

2
c3(t), (3.30b)

This causes causes some admixture of the state |3〉 to |3〉 and conversely, the state

|2〉 is dressed with the state |3〉. In leading order in Ω/(δ + iΓ/2) this gives

|2̃〉 =
[
|2〉e−iω2t + b|3〉e−i(ω3+δ)t

]
e−iβt (3.31)

with b = Ω
2(δ+iΓ)

and β = 1
2
Ωb. On resonance with δ = 0, the decay rate of |2̃〉 is

Γ̃ =
Ω2

Γ
. (3.32)

Assuming a linewidth of Γ/(2π) = 28 MHz for the excited state, an intensity of

I = 1.1kW/cm2 is required to achieve a effective decay rate of Γ̃ = 1 kHz, fast

compared to the coherence times of nuclear spins of alkaline-earth-like atoms, which

can be up to a second [52].

Note that Γ̃ is inversely proportional to Γ, so the faster |3〉 decays, the smaller

the resulting linewidth of the dressed state. This is an example of the Zeno effect,
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in that the decay of |3〉 probes whether or not the population from state |2〉 was

pumped out [62]. Therefore, quenching via states with smaller linewidths can be

advantageous under certain circumstances.

Pulsed scheme

An alternative approach to quenching is to use pulses of light to transfer the popu-

lation from the metastable state to the rapidly decaying state. Here I will examine

a scheme where we have several pulses with duration τ1 < 1/Γ separated by a time

τ2 > 1/Γ to answer the question whether it is possible to achieve a higher pumpout

rate than with a cw pulse with duration t, assuming that the energy input of the

laser is held constant. To this end, I use again the master equation in Lindblad form,

given in Eq. (3.20).

In this case, we assume that there is no coupling between states |3〉 and |1〉, which

is a good approximation, given that Γ = Γ3 is six orders of magnitude bigger than Γ2.

Furthermore, |3〉 also decays predominantly to |2〉 and we ignore spontaneous decay

from |3〉 to |2〉, such that σ+ = |3〉〈1|. The Hamiltonian that governs the dynamics

of this process is given in (3.29). Putting this all together yields the following set

of coupled differential equations for the relevant populations and coherences of the

density matrix

ρ̇11 = Γρ33 (3.33a)

˙ρ22 = ΩIm(ρ23) (3.33b)

˙ρ33 = −ΩIm(ρ23)− Γρ33 (3.33c)

˙ρ23 =
iΩ

2
(ρ33 − ρ22). (3.33d)
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For small times τ this can simply be integrated to give

ρ11 = Γτρ33 (3.34a)

ρ22 = ΩτIm(ρ23) + ρ22(0) = ΩτIm(ρ23) + 1 (3.34b)

ρ33 = −ΩτIm(ρ23)− Γτρ33 (3.34c)

ρ23 =
iΩτ

2
(ρ33 − ρ22), (3.34d)

where ρ22(0) = ρ33(0) = 0. For small τ most of the population is still in the

metastable state, ρ22 ≈ 1 and ρ22 � ρ33, as can be seen by solving for these popula-

tions, which leads to

ρ11 = ΓΩ2τ 3 (3.35a)

ρ22 = 1− Ω2τ 2. (3.35b)

We assume that the time for the experiment t � τ2 � τ1, such that there will be

many pulses that transfer population. The original intensity is I0, the intensity of

the short pulses is then I1 = (τ1 + τ2)/τ1I0. The Rabi frequency scales with the

square root of the intensity, therefore the Rabi frequency for the pulses is given by

Ω1 =
√

(τ1 + τ2)/τ1Ω. The population which is pumped out of ρ22 with n = t/(τ1+τ2)

pulses is ρ22(0)(1 − c)n = (1 − c)n. According to the equations above c is given by

Ω2
1τ

2
1 = Ω2τ 2

1 (τ1 + τ2)/τ1 ≈ Ω2τ1τ2. For small τ1 it follows that n ≈ t/τ2 Putting it

all together gives

ρ22(t) ≈ (1− Ω2τ1τ2)t/τ2 . (3.36)

It can be seen that for τ1 → 0 all the population stays in the ρ22 state. Therefore,

using a pulsed scheme to pump the population out of the metastable state does not

necessarily improve the decay rate if Γ� Ω, as long as the intensity times the time

of the pulses is held constant.
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3.2.3 Decoupling the Nuclear Spin from the Electronic De-

grees of Freedom in the Quenching Process

In order to obtain the product states of nuclear-electron spin degrees of freedom in

1P1 as required for preserving nuclear spin coherence, we employ a magnetic field.

The 1P1 subspace is then governed by the Hamiltonian including Zeeman interaction,

magnetic spin coupling and quadrupole effects,

Ĥ = Aî · ĵ +Q
3(̂i · ĵ)2 + 3/2̂i · ĵ− i(i+ 1)j(j + 1)

2ij(2i− 1)(2j − 1)

+ gJµB ĵ ·B− gIµN î ·B, (3.37)

where gJ and gI are the relevant electron and nuclear g-factors. If now the energy

shift due to the magnetic field is large compared to the hyperfine splitting, such that

we are in the Paschen-Back regime, mi and mj become good quantum numbers once

again. The magnetic hyperfine constants are A/h = −216 Mhz and A/h = −3.4

MHz for 171Yb and 87Sr respectively [52, 24, 63].

For 171Yb, because i = 1/2, the quadrupole constant Q = 0 and we can analyt-

ically solve for the energy spectrum and eigenstates. By using Aĵ · î = A((̂i+ĵ− +

î−ĵ+)/2 + îz ĵz), it can be seen that the above Hamiltonian is blockdiagonal in the

basis |i = 1/2,mi = 1/2, j,mf + 1/2〉, |i = 1/2,mi = −1/2, j,mf − 1/2〉 and the

blocks with constant mf can be written as A
2
(mf− +B[gJµB(mf−)− 1

2
gIµN ] A

2

√
j(j + 1)−mf+mf−

A
2

√
j(j + 1)−mf+mf− −A

2
(mf+) +B[gJµB(mf+) + 1

2
gIµN ]

 ,

(3.38)

where mf± = mf ±1/2. Solving these blocks leads to a modified Breit-Rabi formula,

Emj ,mi(B) = − EHF

2(2j + 1)
+ gJµBBmf ±

EHF

2

√
1− 4mfx

2j + 1
+ x2, (3.39)
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where x = (gIµB + gJµN)B/EHF, mf = mi +mj and EHF = A(j+ 1/2). This differs

from the standard Breit-Rabi formula, in which j = 1/2 and i is arbitrary, in that i

is replaced by j and the second term as well as the second term in the square root

have opposite signs. The resulting Zeeman diagram can be seen in Fig. 3.3. The

eigenstates are specified by

|mf〉 =
∑
q

cq,mf |mi = mf − q〉|mj = q〉, (3.40)

for q = 0, 1,−1, with field dependent expansion coefficients cq,mf . For high magnetic

fields, in the subspace of interest, c0,mf → 1, as can be seen in Fig. 3.4, and the

states are in a product state |mi〉 ⊗ |mj = 0〉. Deviations from this limit lead to the

residual differential g-factor.

Since 87Sr has a large quadrupole constant Q/h = 39 MHz [64], the Breit-Rabi

formula does not apply. Diagonalizing Eq. (3.37) numerically gives the Zeeman

diagram shown in Fig. 3.3 (for an analytic form, see [24]). Each of the three subspaces

for mj = 1, 0,−1 consists of 10 sublevels which asymptote to the 2i + 1 projections

associated with the nuclear spin of this isotope, i = 9/2. For fields of order 10

mT or greater the Zeeman effect dominates over the hyperfine coupling and the

sublevels approach product states of electron and nuclear spin. However, the residual

quadrupole interaction leads to a complex spectrum that is not described by a linear

Zeeman shift with an effective g-factor. For B-fields between 50 and 120 mT, the

subspace with mj=0 is nearly flat. Additionally, due to the quadrupole symmetry,

the states with equal |mi| are paired and very close in energy (less than 2 MHz),

whereas the energy splitting between the pairs is on the order of tens of megahertz,

nearly as big as the linewidth. Given the near degeneracy of the sublevels ±mi, we

will consider preserving nuclear spin coherence in a qubit encoded in one of these

two-dimensional subspaces, thereby ensuring that the frequencies of the different

decay channels are not resolvable.
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3.3 Results

In the following, I quantitatively study the transfer of nuclear spin-coherence via

spontaneous emission. Consider a qubit in the excited state α|e, ↑〉 + β|e, ↓〉 which

decays to the ground state |g〉. We wish to transfer the qubit into the superposition

α|g, ↑〉 + β|g, ↓〉. Here |e, ↑(↓)〉 = |1P1,mf = ±mi〉 and |g, ↑(↓)〉 = |1S0,±mi〉. The

evolution of the atom can be described by a master equation in Lindblad form,

ρ̇ = − i
~

[H, ρ]− 1

2

∑
q

(L†qLqρ+ ρL†qLq − 2LqρL
†
q), (3.41)

where

Lq =
√

Γ
∑
mf

cq(mf )|g,mi = mf − q〉〈e,mf | (3.42)

(with cq defined above in (3.40)) are the “jump operators” for the spontaneous emis-

sion of a photon with polarization π, σ+, σ−, (q = 0,+1,−1). Spin coherences,

described by off-diagonal matrix elements, satisfy

ρ̇
(e)
↑,↓ = (−i∆e − Γ)ρ

(e)
↑,↓ (3.43a)

ρ̇
(g)
↑,↓ = −i∆gρ

(g)
↑,↓ + Γ′ρ

(e)
↑,↓ (3.43b)

where ∆e(g) are the Zeeman splittings of the excited and ground qubits and Γ′ =

Γc0(mf )c0(−mf ). Solving for the ground state coherences in the limit t � 1/Γ,

when all population and coherence resides in the ground states,

ρ
(g)
↑,↓(t) = ρ

(e)
↑,↓(0)

Γ′

Γ− iδ
ei∆gt, (3.44)

where δ = ∆g −∆e is the differential energy shift. The parameters δ and Γ′ − Γ are

functions of applied magnetic field, both approaching zero in the perfect Paschen-

Back limit. For finite fields, imperfect decoupling of electron and nuclear spin results

in imperfect transfer of coherences, characterized by the “fidelity”

F = |ρ(g)
↑,↓(t)|

2/|ρ(e)
↑,↓(0)|2 = Γ′2/(Γ2 + δ2). (3.45)
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The resulting transfer of coherence as a function of the magnetic field can be seen

in Fig. 3.5. For 171Yb, a magnetic field of 1 T is required to reach a fidelity of 99%,

whereas for the ±mi qubit in 87Sr a magnetics field of order 10 mT is sufficient to

obtain this threshold.

Relatively large vibrational frequencies of ν/2π = 90 (260) kHz have already

been realized for Yb (Sr) in an optical lattice in 1D [25, 65]. In principle, given

these tight confinements and the tiny linewidth Γ of the clock transition (few mHz),

the motional sidebands are very well resolved, and extremely cold temperatures

can be reached with a steady state mean vibrational excitation on the order of

〈n〉 ≈ Γ2/(2ν)2 = 10−15 (10−18) [48]. Of course, the true achievable temperature will

depend strongly on the suppression of the different heating mechanisms.

Although I have argued throughout this chapter that one needs to decouple nu-

clear and electronic degrees of freedom in order to preserve nuclear spin coherence

during laser cooling, we still require an interaction that allows for final readout of

the nuclear spin state via resonance fluorescence. Consider first 171Yb. Accord-

ing to Eq. (3.37), the splitting between the |mj,mi = ±1/2〉 states is given by

∆E = gIµNB + Amj, where A is the hyperfine constant for the 1P1 state. Given

171Yb in a magnetic field of 1 T, the splitting between the |mj 6= 0,mi = ±1/2〉 states

is on the order of 200 MHz. The splitting between |↑〉 and |↓〉 in the 1S0 ground state

arises solely due to the Zeeman interaction with the nuclear spin, equal to 7 MHz

for the applied field (gI ≈ 1). The higher the magnetic field, the closer gIµNB is to

Amj and the closer the different splittings are to each other. However, due to the

big hyperfine interaction of 171Yb, huge magnetic fields of tens of T are required for

the two terms to be of the same order. Even more importantly for the purposes of

the readout, the large hyperfine constant causes the difference in the splittings to be

much bigger than the linewidth Γ of the transition. This makes it possible to selec-

tively drive the transition |1S0,mi = +1/2〉 → |1P1,mj = −1,mi = +1/2〉 as shown

in Fig. 3.2 for readout. Furthermore, the states with different mi are decoupled due



Chapter 3. Cooling Atomic Vibration without Decohering Qubits 55

to the magnetic field, as can be seen in Fig. 3.4, thus making a decay process which

switches the sign of mi very unlikely, as in the cooling process. It follows that many

fluorescence cycles can be realized before the nuclear spin of the atom is flipped,

allowing for readout on this line.

For 87Sr in a magnetic field of few mT, the splitting between neighboring substates

in mj = ±1, dominated by the hyperfine interaction, is on the order of the linewidth

and therefore not well resolved. Thus we cannot selectively excite a given mi level in

the same way as described for 171Yb, since invariably both nuclear spin polarizations

that form the basis of the qubit would be excited. We can, however, take advantage

of the difference in the g-factors of the 1S0 and 3P0 states in Sr in order to manipulate

population in the individual magnetic sublevels. Consider a robust control pulse that

transfers all population from 1S0 to 3P0 level. The difference in Zeeman splitting

implies that a narrow-band π-pulse can selectively return population in a chosen mi

level to the ground state, leaving the remaining sublevels shelved in the metastable

clock state. The occupation of level mi can then be probed via fluorescence on the

1S0 → 1P1 transition. The procedure of shelving and activating the state of interest

mi, thus allows us to sequentially measure population in each sublevel.

3.4 Flourescence while Preserving Nuclear Spin

Coherences

In the resolved sideband cooling scheme discussed above, a large magnetic field caused

decoupling between the nuclear spin and the electronic degrees of freedom that were

optically pumped in the process, thus preserving the coherence of the nuclear spins.

However, it is also possible to achieve effective decoupling by virtual coupling to the

excited state using a detuning ∆, which is large compared to the hyperfine splitting,

∆� δEHF . In this case, the hyperfine splitting is not resolved and thus the photon



Chapter 3. Cooling Atomic Vibration without Decohering Qubits 56

scattering is completely elastic, not causing any decoherence, as will be described in

the next paragraph. The disadvantage of this approach is the high intensity required

to excite with a detuning large compared to the hyperfine splitting. This is especially

pronounced for 171Yb, with its large hyperfine splitting. It is also possible to combine

magnetic fields and large detuning to achieve nuclear-spin preserving scattering with

much more relaxed requirements on both the intensity and the required magnetic

fields, as will be shown in this section. This is particularly true when working on the

strong 1S0 → 1P1 transition, where off resonance excitation can still lead to rapid

scattering rates. If one is interested solely in fluorescence of the excited state, eg.

for electronic qubit detection, rather than cooling, such an approach will be useful.

This would for example be the case in the proposal by Gorshkov [66]. The proposal

elucidated here was developed in discussions between S. Rolston from the University

of Maryland and the Joint Quantum Institute (JQI), J. V. Porto from NIST and the

JQI and my advisor I. H. Deutsch and me.

Consider first off-resonant scattering from an excited hyperfine manifold in the

absence of a magnetic field. To find the scattering rate corresponding to absorption of

a laser photon followed by spontaneous emission between magnetic sublevels within

one hyperfine manifold, we use the Kramers-Heisenberg formula

γfm1→fm2

Ω2Γ

4

∑
q

∣∣∣∣∣∑
f ′

oj′f ′jf

〈fm2|(e∗q ·Df ′f )(ε ·D†f ′f )|fm1〉
∆f ′f − iΓ/2

∣∣∣∣∣
2

. (3.46)

As usual, Ω is the Rabi frequency, Γ is the linewidth of the excited state and q is the

angular momentum of the photon. Furthermore, ε and e are the polarization of the

laser photon and the spontaneously emitted photon, respectively, while

D†f ′f =
∑
q,mf

e∗q〈f ′mf + q|fmf ; 1q〉|f ′mf + q〉〈fmf | (3.47)

is the raising operator for the absorption of one photon, and

oj′f ′jf = (2j′ + 1)(2f + 1)

∣∣∣∣∣∣
 f ′ i j′

j 1 f


∣∣∣∣∣∣
2

(3.48)
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is the relative oscillator strength for the different f → f ′ transitions, with the six-j

symbol {...}. For 171Yb, o1,1/2,0,1/2 = o1,1/2,0,3/2 = 1. Since we want to preserve the

direction of the nuclear spin and avoid decoherence, only π-polarized light with q = 0

is used for the excitation, however, spontaneous decay can be either via π, σ+ or σ−

light, yielding the scattering rates

γfm→fm−q
Ω2Γ

4

∣∣∣∣∣∑
f ′

〈f ′m|fm− q; 1q〉〈f ′m|fm; 10〉
∆f ′f − iΓ/2

∣∣∣∣∣
2

. (3.49)

Inserting the numerical value of the respective Clebsch-Gordan coefficients yields

explicit expressions for spin preserving and spin flipping transitions for Yb,

γ1/2→1/2 =
Ω2Γ

4

∣∣∣∣ 1

3(∆− iΓ/2)
+

2

3(∆− δEHF − iΓ/2)

∣∣∣∣2 (3.50a)

γ1/2→−1/2 =
Ω2Γ

4

∣∣∣∣∣ −
√

2

3(∆− iΓ/2)
+

√
2

3(∆− δEHF − iΓ/2)

∣∣∣∣∣
2

. (3.50b)

Here, ∆ is the detuning of the laser from the f ′ = 1/2 state, while δEHF ≈ 300

MHz for the 1P1 state of 171Yb, denotes the splitting between the different hyperfine

states. Thus, for detuning large compared to the hyperfine splitting, the resulting

scattering rates go to

γ1/2→1/2 →
Ω2Γ

4
= γs (3.51a)

γ1/2→−1/2 → 0, (3.51b)

where γs is the scattering rate for unit oscillator strength. The equations for m =

−1/2 differ only by a sign, yielding the same results for large detuning. Therefore,

as stated before, in the limit of large detuning, coherences are preserved.

In the presence of an intermediate magnetic field, both the energy splitting be-

tween the different states as well as their composition changes. As can be seen in

the Breit-Rabi diagram, Fig. 3.3, the states that approach the |mj = 0〉⊗ |mi〉 states

in the Paschen-Back regime, are separated by an energy much smaller than the bare

hyperfine splitting, even for relatively small magnetic fields. Now the laser can be
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tuned relatively close to this manifold, but still with a detuning large compared to

the splitting between the two states, and with a much larger detuning to the other

manifolds with different mj. Excitation to the states in other manifolds is then

negligible. Thus, the detuning required to preserve nuclear-spin coherences is much

smaller in the presence of magnetic fields, as is the required intensity for a given

scattering rate. Note that the scattering rates in the presence of a magnetic field

deviate from (3.49), in that the Clebsch-Gordan coefficients in the nominator are

replaced by the c-factors from Eq. (3.40), such that Eqs. (3.50a) and (3.50b) become

γ1/2→1/2 =
Ω2Γ

4

∣∣∣∣ c0,1/2c0,1/2

∆1/2,0(B)− iΓ/2
+

c−1,1/2c−1,1/2

∆1/2,−1(B)− iΓ/2

∣∣∣∣2 (3.52a)

γ1/2→−1/2 =
Ω2Γ

4

∣∣∣∣ c0,1/2c0,−1/2

∆−1/2,0(B)− iΓ/2
+

c−1,1/2c1,−1/2

∆−1/2,1(B)− iΓ/2

∣∣∣∣2 . (3.52b)

where ∆mi,mj(B) = ∆− gIµNmiB − Emj ,mi(B), is an abbreviation for the detuning

from the respective line, where Emj ,mi(B) is the relevant solution from the modified

Breit-Rabi formula (3.39), while gIµNmiB gives the Zeeman shift in the ground state.

To avoid causing decoherence in the scattering process, the elastic scattering rate

for mi = 1/2 has to equal the elastic scattering rate for mi = −1/2, otherwise

each scattering process constitutes a weak measurement of the state and causes

decoherence. For sufficiently large magnetic fields B & 50mT, the states asymptoting

to |mj = 0〉 ⊗ |mi〉 are separated by less than the linewidth of the excited state.

When the laser is then tuned in the middle between them, an equal superposition

of those two states will be excited, while excitation to other states is negligible.

Decay from this equal superposition will preserve coherences of the nuclear spin,

and the elastic scattering rates for the two processes will be identical. The scattering

rates for spin preserving and spin flip transitions as functions of detuning for different

magnetic fields, at the saturation intensity at which Ω = Γ/
√

2, are shown in Fig. 3.6.

The ratio between the nuclear-spin-preserving scattering rate and the nuclear-spin-

flipping scattering rate is several orders of magnitude, allowing for many scattering
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processes before a spin flip occurs. This scattering process can therefore be used for

readout via flourescence or for the quenching process in resolved sideband cooling as

discussed above.
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∣e〉

Figure 3.1: Schematics of resolved sideband cooling a) shows the cooling process,
while b) shows heating via excitation on the carrier, followed by decay on the blue
sideband. c) shows heating by excitation on the blue sideband followed by decay on
the carrier.
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Figure 3.2: Schematic cooling and readout level-diagram for 171Yb (analogous for
87Sr). Sideband cooling in a trap occurs via excitation on the 1S0 → 3P0 clock
transition (vibrational levels not shown), quenched by coupling to the 1P1 state.
An external magnetic field splits the 1S0 and 3P0 nuclear sublevels (spin-up and
spin-down shown) and ensures preservation of the nuclear spin during resonant ex-
citation and repumping. The dashed arrows demonstrate a possible readout scheme
by resonance fluorescence.
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Figure 3.3: Zeeman diagram of the 1P1 manifold. (a) In 171Yb a slightly modified
version of the Breit-Rabi formula applies. The hyperfine sublevels decouple to prod-
uct states of electron and nuclear spin (Paschen-Back) with modified linear Zeeman
shift. The qubit is encoded in the states |↑〉 and |↓〉 in the mj = 0, subspace. (b)
87Sr Zeeman diagram for the 2i + 1 = 10 sublevels that asymptote to the mj = 0
subspace in the Paschen-Back regime (other subspaces not shown). Because of the
large quadrupole effect, pairs with ±mi are closely spaced for magnetic fields between
50 and 120 mT. Qubits can be encoded in these pairs without loosing coherence in
spontaneous emission.
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Figure 3.4: Field dependent expansion coefficients cq for the mf state of 171Yb. For
zero magnetic fields, these are the well known Clebsch-Gordan coefficients, however,
for high magnetic fields, the coefficients c0,±1/2 go to one, while the coefficients c1,±1/2

go to zero. In the limit of infinite magnetic fields, both the spin-flip probability c2
1,±1/2

and the differential g-factor δg go to zero.
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Figure 3.5: Fidelity for transfer of coherence, F = Γ′2/(Γ2 + δ2) (see text), as a
function of magnetic field. (a) The spin-1/2 qubit of 171Yb. (b) Different choices of
qubit encoding as ±mi in 87Sr.
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Figure 3.6: Scattering rates (arbitrary units) for the cooling scheme utilizing inter-
mediate magnetic fields and large detuning to achieve decoupling of the nuclear spin
from the electronic degrees of freedom. Shown are the scattering rate γ1/2→1/2 (blue),
γ−1/2→−1/2 (green), γ1/2→−1/2 (red) and γ−1/2→1/2 (orange), as a function of the de-
tuning relative to the middle between the two states asymptoting to |mj = 0〉⊗|mi〉.
The different panels are for different magnetic fields, a) is for a magnetic field of 1
mT, b) for 25 mT, c) for 50 mT and d) for 100 mT. For the higher magnetic fields
the ratio between the spin-conserving scattering rates to the spin-changing scattering
rates is large.
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Chapter 4

Optical Feshbach Resonances for

171Yb

4.1 Background

Feshbach resonances, which were first described by Feshbach [67] and Fano [68],

are a very important tool for the manipulation of the scattering properties of two

interacting atoms [35]. They occur when a bound state of one molecular potential, a

closed channel, is energetically close to the threshold of another molecular potential,

an open channel, of the same system (see Fig. 4.1). Under these circumstances, a

scattering state of the second potential can easily be coupled to the molecular bound

state, thus changing its scattering properties and causing the scattering length of the

open channel to go through a pole. Here, the scattering length reaches the unitary

limit, a → ∞. (See also section 2.1.) Off-resonantly, there is still some admixture

of the closed-channel wave function to the open-channel wave function, which is

sufficient to change the scattering length.
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relative distance
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

Figure 4.1: Schematics of a Feshbach resonance. There are two potentials, one of
which has a bound state energetically close to the threshold of the other one. It is
possible to change the relative energy of the two potentials and thus changing the
detuning ∆ between the scattering state and the bound state. For ∆ = 0, the open
channel is resonant with the closed channel and the scattering length diverges.

4.1.1 Feshbach resonances in controlling atom-atom interac-

tions

There is a multitude of applications which are only feasible due to the presence

of Feshbach resonances and the resulting tunability of the scattering interaction

between two atoms. One example is the production of cold molecules via Feshbach

resonances [69], which has been successfully applied for several different species off

alkalis [35]. To this end, the atoms are brought together and then the parameters of

the the experiments are slowly changed, such that the atoms are adiabatically swept

through the Feshbach resonance. The resulting molecules are only weakly bound,

however, they can then be optically transferred to more deeply bound ultracold

molecular states. This is particularly interesting, since it is not possible to laser-

cool molecules, due to the absence of cycling transitions. Additionally, it allows

for the creation of cold polar molecules, whose strong isotropic interaction might
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allow for novel quantum effects [70]. Furthermore, there have been proposals to use

Feshbach resonances in the implementation of quantum information processing in

optical lattices, either by using them to facilitate the interaction between marker

atoms in a superlattice and the memory atoms stored in another lattice [12] or to

create a polar molecule on each lattice site and use these for QIP [71].

Since two-body interactions are the basis of all many-body phenomena, it is not

surprising that Feshbach resonances have also been used to investigate a broad range

of more complex effects, such as the BEC-BCS crossover, where fermionic atoms

form a BCS state on one site of the Feshbach resonance and bosonic molecules form

a BEC on the other [72]. Additionally, Feshbach resonances are useful in controlling

the superfluid-Mott-insulator transition, and they also allow one to change dilute

ultracold gases from being repulsive to being attractive, thus allowing to investigate

the resulting changes of the many-body states of such systems in real time [15, 73].

4.1.2 Magnetic vs. Optical Feshbach resonances

To date, most applied Feshbach resonances were induced through the application of

an external magnetic field. Here the two different channels are different hyperfine

levels in the ground state of alkali atoms, which have different magnetic moments.

Changing the magnetic field therefore changes the position of the bound state relative

to the scattering state, and the resulting scattering length a can be parameterized

as [35]

a = abg

(
1− ∆B

B −B0

)
, (4.1)

where ∆B is the width of the Feshbach resonance, while B0 is its position and abg is

the background scattering length in the absence of a magnetic field.

However, it is also possible to realize optical Feshbach resonances, by using a

laser to couple a scattering ground state to an excited molecular bound state [74, 75].
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This is particularly relevant for alkaline-earths, which do not have different hyperfine

states in their 1S0 ground state and thus do not have magnetic Feshbach resonances.

Furthermore, lasers can be controlled much more easily and faster than magnetic

fields, allowing for unprecedented control over the two-body interactions, including

spatially and temporally varying scattering lengths. On the other hand, big admix-

tures and therefore large changes of the scattering length require a large Condon

factor, that is, good overlap between the bound molecular wave function and the

ground state scattering wave function. To accomplish this, it is necessary to couple

the ground state wave function to long-range states which are very close to dissoci-

ation, where the density of states is high. However, to now control the scattering

length without causing large losses due to photoassociation and spontaneous emis-

sion, the detuning has to be big relative to the linewidth of the state. For alkalis,

due to their relatively broad optical transitions, it is not possible to fulfill all these

conditions at once, leading to substantial losses due to rapid spontaneous emission

[76, 77, 78]. Fortunately, the very narrow intercombination transition of alkaline-

earths allows for their simultaneous fulfillment [79, 80].

In this chapter, I study optical Feshbach resonances for the 1S0 → 3P1 transition

of 171Yb. The underlying models are generally applicable to other alkaline-earths,

however, 171Yb was chosen since its nuclear spin i = 1/2 forms a natural qubit for

quantum information processing. Optical effects in collisions of alkaline-earth-like

atoms have been demonstrated in recent experiments, including photoassociation

spectroscopy in 171Yb [81] and 88Sr [82] and optical Feshbach resonances of the

bosonic isotopes with zero nuclear spin, including 172Yb, 176Yb [80] and 88Sr [83].

I describe here the first multichannel calculation of Feshbach resonances in fermionic

alkaline-earth-like atoms, including excited-state hyperfine structure, and the re-

sulting modification to nuclear-exchange processes that can be controlled through

off-resonant laser excitation.
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4.1.3 Theory of optical Feshbach resonances

Consider a pair of colliding atoms, just above threshold in their ground state inter-

action potential VS. These atoms are illuminated by a laser with energy ~ωL which

is slightly detuned from an excited bound state Eb in an excited bound state poten-

tial VB, such that the detuning ∆ = Eb/~ − ωL, causing coupling between the two

potentials VB and VS with the optical coupling potential

Vopt(IL) = dAE = ~ΓA

√
IL

2Isat
, (4.2)

where dA is the atomic dipole moment, while E =
√

2IL/(cε0) is the electric field

of the laser with the permittivity of vacuum ε0, the intensity of the laser IL and

the speed of light c. Furthermore, Isat = (2π2~ΓAc)/(3λ
3) is the atomic saturation

intensity, which is 0.13 mW/cm2 for the intercombination transition in 171Yb, and

ΓA and λ are the linewidth and wavelength of the atomic transition, respectively

[84, 79].

Bohn and Julienne [84] started with this coupling to derive a semianalytic formula

for the scattering length for optical Feshbach resonances. The scattering matrix

resulting from this ansatz is given by

S = e2iδbg
∆− i(Γstim − ΓM)/2

∆ + i(Γstim + ΓM)/2
, (4.3)

with the background phase shift δbg in the absence of laser light. Here ΓM is the

natural molecular linewidth and Γstim is the linewidth at a finite collision energy,

broadened by stimulated emission to be

Γstim(I) =
π

2~
|〈b|d · E|E〉|2 = πV 2

opt|〈b|E〉|2 =
π

2

(
I

Isat

)
~Γ2

AfFC . (4.4)

where fFC is the Franck-Condon factor that measures the overlap between the spatial

wave function of the scattering electronic ground state |E〉 at energy E and the bound

excited state |b〉, see Eq. (4.36). Note that this definition of the Franck-Condon factor

includes the spin parts of the wave functions, thus it equals fFCfrot from [79].
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From Eq. (4.3), I want to obtain the optical scattering length, which is generally

of the form

a(∆, I) = abg + aopt(∆, I)− ibopt(∆, I), (4.5)

where abg is the background scattering length in the absence of the radiation, and

both the real part of the optically induced scattering length, aopt(∆, I) and the

imaginary part bopt(∆, I) are functions of the intensity of the radiation I and the

detuning ∆. Inserting Eq. (4.3) into (2.17) with δ → δ − δbg, where δbg is the

background scattering phase shift, which is small for 171Yb, the optically induced

parts of the scattering length are given by

aopt(I,∆) = lopt(I)

(
∆ΓM

∆2 + (ΓM + Γstim(I))2/4

)
≈ lop(I)

ΓM
∆

(4.6)

and

bopt(I,∆) =
lopt(I)

2

(
Γ2
M

∆2 + (ΓM + Γstim(I))2/4

)
≈ 1

2
lopt(I)

(
ΓM
∆

)2

. (4.7)

The latter form of the equations is only valid in a regime in which ∆ � ΓM and

∆ � Γstim, where ΓM is the molecular spontaneous decay rate calculated from the

multichannel wave function. The optical length lopt(I), which is a key parameter

determining the strength of the influence of the laser is given by [85]

lopt(I) = Γstim(I)/(2krΓM), (4.8)

where kr is the relative coordinate wave number for the reduced mass µ.

As Eqs. (4.6) and (4.7) show, the scattering length can only be changed without

the introduction of large losses if ∆� ΓM , which, as mentioned before, is the reason

for the inherent advantage of alkaline-earths over alkalis for the implementation of

optical Feshbach resonances.
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Figure 4.2: S-wave ground state wave functions calculated with the formula by Bo
Gao [86], for a temperature of a) 25µK and b)2 µK. The dashed red line is a sine
function, shifted by the known scattering length of -2.83 a0. It can be seen that the
agreement is excellent.

4.2 Calculation

The prediction of the optical Feshbach scattering length as a function of the laser

intensity and detuning requires a good understanding of both the ground state scat-

tering wave functions and the excited molecular wave functions. This in turn requires

a good understanding of the molecular potentials, including the nuclear spin and the

hyperfine interaction, as well as magnetic fields and rotation.

4.2.1 Ground States

For alkaline-earths, the 1S0 + 1S0 ground state is comparatively simple, in the ab-

sence of nuclear spin there is only one single potential. For isotopes with finite

nuclear spin, these potentials have a multiplicity, however, owing to the lack of hy-

perfine interaction they are not coupled to each other and can therefore be treated as

single channels. For alkaline-earth-like atoms in the ground state, the only nonzero

quantum number are the nuclear spin i and the orbital angular momentum of the
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two nuclei, R that defines the partial wave of the states. 171Yb, with its nuclear spin

of 1/2 is a fermion, thus the total wave function has to be antisymmetric. Since the

parity of the spatial wave function is given by p = (−1)R, it follows that the only

allowed spin state for even partial waves is given by the antisymmetric singlet state

χS.

1√
2

(|↓〉A|↑〉B − |↑〉A|↓〉B)⊗ |R,mR〉 = χS ⊗ |R,mR〉, (4.9)

where |↑〉 = |i = 1/2,mi = 1/2〉 and |↓〉 = |i = 1/2,mi = −1/2〉, while A and B

label the two different nuclei. For odd partial waves, on the other hand, the spin

state is in one of the triplet states, that is

1√
2

(|↓〉A|↑〉B − |↑〉A|↓〉B)⊗ |R,mR〉 = χT ⊗ |R,mR〉

|↓〉|↓〉|R,mR〉

|↑〉|↑〉|R,mR〉. (4.10)

where the magnitude of I = i1 + i2, I = 1, p = −1 and the magnitude of the total

angular momentum in the ground state T = R + I. For p-waves, where R = 1,

T = 0, 1 or 2.

Because the bulk of the probability amplitude of these wave functions lies away

from the chemical binding region, only the long-range part of the potential, which

can be modeled with a van der Waals C6/r
6 potential, influences the shape of the

ground state wave functions. Therefore, we can use the semi-analytic solutions to

such a C6/r
6 potential found by Gao [86] to determine these functions. This yields

two linearly independent solutions, g(r) and f(r). The energy-normalized ground

state wave function is then given by

Ψgao(r) =

√
2µ

π~2k
(f(r)−K0g(r)) . (4.11)

Here K0 is calculated from the scattering length of the ground state potential of

171Yb, via

−ka =
K0Zgg − Zfg
Zff −K0Zgf

, (4.12)
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where Zgg, Zfg, Zff and Zgf are parameters determined by the energy and the C6

coefficient, as described in detail in [86]. The s-wave scattering length for the ground

state of 171Yb was determined by Kitagawa et al. [87] to be a = −0.15 nm=-2.83 a0,

where a0 is the Bohr radius. In the same paper, the C6 coefficient was found to be

C6 = 1932(30) au.

For large r, outside of the range of the van der Waals potential, the wave function

becomes a phase-shifted free scattering state,

Ψgao(r)
r→∞−−−→

√
2µ

π~2k
(sin(kr)− ka cos(kr)) (4.13)

Plots of the resulting s-wave ground state wave functions for 2µK and 25µK can

be seen in Fig. 4.2, together with the long-range wave functions calculated from

the scattering length for the ground state potential. For sufficiently large internu-

clear distance r, the agreement is excellent. For p-waves, the scattering length was

determined from a fit to a numerical calculation with the Numerov method to be

apbg = (tan[δpbg]/k
3)1/3 = −116a0.

4.2.2 Excited States

The excited 1S0 + 3P1 molecular states are much more complicated, giving rise to

a multitude of different coupled potentials, and thus requiring a full multichannel

calculation. That is, the different scattering channels are coupled to each other, and

diagonalizing the potential part of the Hamiltonian at each internuclear distance r

will not capture all the interactions. Physically, the scattering interaction can be

seen as a beamsplitter, where the incoming scattering state is split into the different

channels, interacts there with different interaction amplitudes and the different chan-

nels interfere [39]. Thus, the resulting wave functions will have components of more

than one channel and is discussed in more depth in Section 4.3.4. Fully accounting

for this requires diagonalizing the Hamiltonian for all the channels and internuclear

distances at the same time, and is done with a DVR method, as described later.
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We find the overall Hamiltonian by starting with the Born-Oppenheimer po-

tentials, that is, the potentials formed by electrostatic interaction and relativistic

spin-orbit interactions. Since we are interested in the hyperfine structure, including

rotation and magnetic fields, the relevant Hamiltonians are added to the Hund’s case

c) Hamiltonian, such that

H = Hc +HHF +Hrot +Hmag. (4.14)

The first term represents the radial kinetic energy of the nuclei p2
r/2µ plus the elec-

tronic Born-Oppenheimer potentials that asymptote to the 1S0+3P1 scattering chan-

nel and define potential curves VΩσ(r), where σ = p(−1)I . These potentials are

modeled through a Lennard-Jones plus dipole-dipole potential,

VΩσ(r) =
C12

r12
− C6

r6
− σC

Ω
3

r3
, (4.15)

where the parameters are known reasonably well from fits to experimental data as

C6 = 2810 au, C12 = 1.862 × 108 au and C1
3 = −C0

3/2 = 0.09695 au [40]. The

hyperfine interaction between the electron and nuclear spin is described by

HHF = A(i1 · j1 + i2 · j2) (4.16)

with the hyperfine constant A, using the fact that j1 = 1, i1 = 1/2 and j2 = 0. The

nuclear mechanical rotational part of the Hamiltonian is given by Hrot = ~2

2µr2R(R+

1), with the reduced mass µ, radius r and rotational angular momentum quantum

number R. Finally, in the limit of small magnetic fields, (|µBgfB| � A~) such that

we are in the Zeeman regime where the projections of f1 and f2 are good quantum

numbers, the magnetic field part of the Hamiltonian is given by Hmag = µBgf f̂1 ·B+

µBgf f̂2 · B where B is the strength of the magnetic field, gf is the Landé g-factor

and µB is the Bohr magneton. Due to the large hyperfine constant of 3.958 GHz

of the 3P1 state of 171Yb, the above condition is fulfilled to a good approximation

for magnetic fields up to several tesla. We neglect the small magnetic dipole-dipole

interactions between nuclei.
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For the given Hamiltonian, the good quantum numbers are the total angular

momentum quantum number T , its projection on the space-fixed quantization axis

MT , and parity due to inversion of all particles p. Here T = F + R, with F = J + I,

where J is the electronic angular momentum (spin and orbital, J = L + S), R is the

nuclear orbital angular momentum describing mechanical rotation of the dimer, and

I is the nuclear spin angular momentum. In addition, by Fermi statistics, the total

wave function must be antisymmetric under exchange of the nuclei, and by exchange

of all particles. In the absence of a magnetic field, F is also a good quantum number.

Other quantum numbers are approximate, depending on the dominant forces. Any

basis of states that is specified by these eigenvalues is constrained by the overall

symmetries. For example, for a separable basis of electron and nuclear orbitals,

(−1)l1+l2+R = p, where l1 = 0, l2 = 1 are the individual atomic electron angular

momenta for the S+P collision.

4.2.3 Channel Bases

As discussed in Sec. 2.3, the overall Hamiltonian matrix can be calculated by defining

several bases, defined by different couplings of the angular momenta of the atoms,

in which the different parts of the Hamiltonian are diagonal. Finding the overall

Hamiltonian matrix then reduces to the application of basis transformations. The

uncoupled atoms have |nlsjmjimi〉 as good quantum numbers, where j = 0 for the

1S0 ground state. In the excited 3P1 state, j and i are coupled to give f , the total

angular momentum of the atom. While there are many different ways in which these

angular momenta can be coupled to each other and to the rotation R of the two

nuclei, only the following three bases are relevant here. Most of the calculation is

done in the |ε〉 basis, which is a Hund’s case e) basis, extended to include the nuclear

spin

|ε〉 = |((f1f2)FR)TMTp〉. (4.17)
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For the excited 1S0 + 3P1 state, we chose the atom with label 2 to be in the ground

state, such that j2 = 0, f2 = i2, for alkaline-earths. F = f1 + f2 is the total angular

momentum of the coupled atoms, with magnitude f1 = 1/2, 3/2 and f2 = 1/2 for the

possible individual atomic angular momenta. This basis is used for the calculation

of the hyperfine part of the Hamiltonian, which is diagonal in this basis and can be

expressed as

HHF = A(i1 · j1 + i2 · j2) = A/2 [f1(f1 + 1)− i1(i1 + 1)− j1(j1 + 1)]

= A/2 [f1(f1 + 1)− 11/4] , (4.18)

where in the last step the fact that i1 = 1/2, j1 = 1 and j2 = 0 was used. Additionally,

the magnetic field Hamiltonian, HB is also diagonal in this basis and becomes HB =

gfmf1µB, for a magnetic field along the z-axis of the space fixed coordinate system.

Another important basis is the uncoupled |π〉 = |f1mf1 , i2mi2 , RmR, p〉 basis,

which is valid for very far separated atoms, such that their electron spin, electronic

orbital angular momentum and nuclear spins are coupled together to give a total

atomic spin fk = jk + ik for each atom k. Additionally, the projection of fk on the

space-fixed axis, mfk is also a good quantum number, as are the rotational quantum

number of the two atoms R and its projection on the space-fixed axis mR. Denoting

|βk〉 = |γkfkmfk〉 = |nk((sklk)jkik)fkmfk〉 (for the atom in the ground state, f = i,

since j = 0) and symmetrizing yields

|π〉 = |(β1β2)ρRmR〉 = (4.19)

=

 1√
2

[
|β1〉A|β2〉B + ρ(−1)R|β2〉A|β1〉B

]
⊗ |R,mR〉

|β1〉A|β2〉B ⊗ |R,mR〉

Here ρ = −1 for fermions and the labels A and B denote the different nuclei. As

required, these states are antisymmetric under exchange of atoms A and B. The

parity is given by p = p1p2(−1)R, where pk is the parity of the electron state k,

which is -1 for the 3P1 state and 1 for the 1S0 state. This basis is used to calculate

the matrix elements of the dipole operator between the ground and multichannel



Chapter 4. Optical Feshbach Resonances for 171Yb 78

excited states. These are essential for determining the molecular natural linewidth

as detailed in [85], where the transformation 〈π|ε〉 is also given to be

〈ε|π〉 = δγ′
1,γ1

δγ′
2,γ2

δf ′
1,f1

δf ′
2,f2
δR′

1R2
〈f1f2mf1mf2|FmF 〉〈F ′mFRmR|T,MT 〉Ξε,π′ , (4.20)

where Ξεπ′ =
√

2 for γ1f1 = γ2f2 but mf1 6= mf2 and 1 otherwise. In the excited

molecular states, one atom is in the (6s2)1S0 state and the other one in the (6s6p)3P0

state, therefore, Ξε,π′ is always one.

Hmag, which is diagonal in the |π〉 basis, but not in the |ε〉 basis, is then calculated

via

〈ε|Hmag|ε〉 =
∑
π,π′

〈ε|π〉〈π|Hmag|π′〉〈π′|ε〉. (4.21)

Additionally, the molecular dipole matrix element in the |ε〉 can be calculated with

the |π〉 basis

〈ε|(dmol)q|εg〉 =
∑
ππg

〈ε|π〉〈π|(dmol)q′ |πg〉〈πg|εg〉, (4.22)

in which it can be reduced to sums of the atomic dipole moment dq

〈π|(dmol)q|πg〉 =δρgρδRgRδRM,gRM

×
[
〈β1|dq|β1,g〉δβ2β2,g + ρ(−1)R〈β1|dq|β2,g〉δβ2β1,g

]
(4.23)

for β1 < β2 and

〈π|(dmol)q|πg〉 = δρgρδRgRδRM,gRM
√

2〈β1|dq|β1,g〉 (4.24)

for β1 = β2. The following notation is used here. The ground states are labeled with

a subscript g, for the excited state, β2 denotes the an atom in the 1S0 ground state

and β1 is the atom in the 3P1 excited state.

The third basis, denoted by |γ〉, is an extended Hund’s case c) basis, as derived

in section 2.3. The Born-Oppenheimer Hamiltonian, Hc is diagonal in this molecular
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basis for which s1 + s2 = S, l1 + l2 = L,L + S = J and i1 + i2 = I. Furthermore,

I + J = F which is then coupled to rotation of the nuclei R, to give again the total

angular momentum T, F + R = T.

|γ〉 = |JΩIιΦ, TMTp〉 =
∑

(JI)FΦ

〈(JI)FΦ|JΩIι〉|(JI)FΦ〉DT∗Φ,MT
. (4.25)

Here Φ = Ω + ι where Φ, Ω and ι are the projection of F,J and I on the internuclear

axis and DT∗Φ,MT
is the wave function of a symmetric top. Thus, Φ is the projection

of T on the internuclear axis, while MT is its projection on the space fixed axis. For

a similar basis set for alkalis, compare to [85]. The basis transformation between |γ〉

and |ε〉 is given by

〈γ|ε〉 =〈FΦR0|TΦ〉
√

2R + 1

2T + 1
〈JΩ, Iι|FΦ〉

× (−1)j1+i1+i2+F
√

(2f1 + 1)(2I + 1)

 j1 i1 f1

i2 F I

 , (4.26)

where {...} denotes a Wigner 6J-symbol. The gerade/ungerade quantum number σ

is determined by p = σ(−1)I . For a derivation of this transformation see section 2.3.

4.3 Results

4.3.1 Selective Change of a for P-waves and S-waves

As discussed in section 4.2.1, the total nuclear spin for s-wave collisions I=0, as

are all other angular momenta, including the total angular momentum T . The

electronic ground states have a parity of p = (−1)R, which is 1 for s-waves. Since

the dipole operator is odd under parity and has a selection rule of ∆T = 0, 1 with

T = 0→ T = 0 forbidden, the excited state has to have opposite parity p = −1, and

a total angular momentum of T = 1. Therefore, the rotation R of the nuclei in the

excited state has to be even. Given the fact that T = F + R, with F = 0, 1 or 2 and
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Figure 4.3: The excited adiabatic potentials, accessible via for s-wave collisions.
These potentials are found by diagonalizing the potential part of the Hamiltonian as
a function of the internuclear distance r. They have a total angular momentum of
T = 1 and their parity p = −1. The shown potentials are for no magnetic field, thus
they are degenerate in MT .

because in the excited state we must have (−1)l1+l2+R = p = −1, R can be either 0

or 2 in the excited state. Taking all this into account leads to 15 different basis states

in the |ε〉 basis, which are listed in table 4.1. However, the resulting Hamiltonian is

blockdiagonal in MT , thus there are three different blocks of 5 channels each. In the

absence of a magnetic field, these three blocks are degenerate.

P-wave collisions are naturally more complex than s-wave collisions, given their

higher rotation R = 1 and their triplet nuclear spin I = 1, which allow for T = 0, 1 or

2. Therefore, there are many more accessible excited states with T = 0, 1, 2 or 3, odd

rotation R = 1, 3, 5 and even parity p = 1, leading to 89 different basis states in the |ε〉

basis, as can be seen in table 4.2. The Hamiltonian is again block diagonal in MT and

T , giving rise to 16 different blocks ranging in size from 2×2 to 6×6. In the absence of

magnetic fields, this reduces to 19, (2T+1)-fold degenerate channels. Due to the large

mass of 171Yb, the rotational energy is very small, causing several of the potentials

with different R to be nearly degenerate. For better visualization, the adiabatic



Chapter 4. Optical Feshbach Resonances for 171Yb 81

40 60 80 100 120

-5

0

5

10

rHa0L

E
HG

H
zL

Figure 4.4: The excited adiabatic potentials for p-wave collisions, analogous to Fig.
4.3. Here the total quantum number T = 0 (blue), 1 (green), 2 (red) or 3 (black),
causing different multiplicity for the different lines. Due to the small rotational
energy, several of these lines can not be resolved on this scale, leaving only 8 distinct
lines.

potentials are shown in Fig. (4.3) and Fig. (4.4). These potentials are obtained by

diagonalizing the potential part of the Hamiltonian (4.14) for each value of r. While

this gives a good visual understanding of the system, it can not exhibit the diabatic

T f1 F R
1 1/2 1 0
1 1/2 1 2
1 3/2 1 0
1 3/2 1 2
1 3/2 2 2

Table 4.1: The different channels of the |ε〉 basis used in the calculation for the s-wave
states. f2 is always 1/2 and is therefore suppressed. MT , which is also not shown,
can be -1, 0, or 1, for each of the states, leading to a total number of 15 different
channels. In the absence of a magnetic field, each of these states is 3-fold degenerate,
yielding 5 different degenerate potentials.



Chapter 4. Optical Feshbach Resonances for 171Yb 82

T f1 F R
0 1/2 1 1
0 3/2 1 1
1 1/2 0 1
1 1/2 1 1
1 3/2 1 1
1 3/2 2 1
1 3/2 2 3
2 1/2 1 1
2 1/2 1 3
2 3/2 1 1
2 3/2 1 3
2 3/2 2 1
2 3/2 2 3
3 1/2 0 3
3 1/2 1 3
3 3/2 1 3
3 3/2 2 1
3 3/2 2 3
3 3/2 2 5

Table 4.2: The different channels of the |ε〉 basis used in the calculation for the p-wave
states. MT is suppressed for clarity, however, each of the states has a multiplicity
of 2T + 1, yielding 89 different channels. In the absence of a magnetic field, each of
these states is 2T + 1-fold degenerate, yielding 19 different degenerate potentials.

coupling between the different channels. Therefore, determining wavefunctions and

eigenenergies from these potentials would be necessarily less accurate than the full

multichannel calculation described earlier.

Note that the symmetry and selection rules cause the potentials to be split into

two separate classes, one of which is accessible from s-wave collisions and the other

that is accessible from p-wave collisions. This can be exploited for the independent

manipulation of p-wave and s-wave scattering lengths, by choosing to use a bound

state with parity p = −1, which is far from bound states with a parity of p = 1.

Since this bound state is dark for p-waves, the s-wave scattering length is changed
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Figure 4.5: Adiabatic purely long-range potentials for s-waves, for a magnetic field of
1 kG. In the absence of a magnetic field all three potentials are degenerate with the
line in the middle. It can be seen that the extremely shallow potentials get shifted
and develop a barrier in the presence of a magnetic field.

more strongly than the p-wave scattering length that has a larger detuning. In

the same manner it is possible manipulate only p-waves or even to use two lasers

simultaneously, one to change s-waves and the other one to change p-waves. By

spatially and/or temporally changing the intensity of these two different Feshbach

lasers, new and interesting avenues in the control of ultracold atoms are opened.

4.3.2 Purely Long-Range States

Of special interest are several purely long-range (plr) potentials. These are potentials

which have both the outer and inner classical turning point at long internuclear

distance. Typically, purely long-range potentials form in a transition regime between

Hund’s cases, where the strength of the spin-orbit coupling is about as large as the

energy difference between the Born-Oppenheimer potentials. This can cause avoided

crossings between the different Born-Oppenheimer potentials, such that the potential
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Figure 4.6: Adiabatic purely long-range potentials for p-waves, again for a magnetic
field of 1 kG. While these potentials are also shifted in the presence of the magnetic
field, they do not develop barriers. In the absence of a magnetic field, these potentials
form two nearly degenerate potentials, due to their different rotational quantum
number R.

surface acquires a minimum at large relative distance of the nuclei. Several bound

states of these purely long-range potentials have been observed [39]. Additionally,

at even larger r, it is also possible that the hyperfine interaction causes the same

effect. Due to the smaller hyperfine constant compared to the fine-structure coupling

constant, the resulting potential minimum is even shallower and at larger internuclear

distance. Therefore, in alkalis, the hyperfine interaction is typically too small relative

to the linewidth to observe such purely-long range states. In alkaline-earths, on the

other hand, again due to the narrow intercombination line, and especially in 171Yb

with its large hyperfine constant, these states can be experimentally observed. The

p-wave plr potential was experimentally observed by Enomoto et al. [81] and has a

depth of only 717 MHz, while the s-wave plr potential is even more shallow, it has

a depth of only 59.2 MHz and to date has not been experimentally observed. The

adiabatic purely long-range potentials are shown in Fig. 4.5. The s-wave potential

is triply degenerate in the absence of a magnetic field, with the quantum numbers
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Figure 4.7: The eigenstates of an adiabatic purely long-range potential for p-waves
in the absence of a magnetic field. All the amplitude of the states is at compara-
tively large r. For simplicity, the vibrational states shown are eigenfunctions of the
adiabatic potential, similarly to the calculation in [81]. For full multichannel purely
long-range states see Fig. 4.10.

f1 = 3/2, F = 1, R = 2, T = 1,MT = 0,±1. In the presence of a magnetic field,

however, the three degenerate potentials shift relative to each other and they also

change their shape, developing a barrier and thus a possible shape resonance, as

can be seen in Fig. 4.5. There are two nearly degenerate p-wave purely long-range

potentials, one with the quantum numbers f1 = 3/2, F = 2, R = 1, T = 1,MT in the

ε basis and the other one with f1 = 3/2, F = 2, R = 1, T = 3,MT . In the absence of

a magnetic field, the former is triply degenerate, while the latter is 7-fold degenerate.

In the presence of a magnetic field, these potentials are also shifted relative to each

other, lifting the degeneracies, as can be seen in Fig. 4.6, even though, in contrast

to the s-wave purely long-range states, they do not acquire a shape resonance.

While all the states close to dissociation depend mainly on the very long-range

part of the potentials, this effect is even more pronounced for purely long-range

states, given that they are only sensitive to the hyperfine interaction and the long-

range tail of the potential. This allows for very accurate determination of the Cn
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coefficients if the molecular potentials are modeled with Lennard Jones potentials,

including the determination of the C3 coefficient in the excited states, which are

closely related to the lifetime of the excited states. [39]. Furthermore, Enomoto et

al. [81] used this to determine the C6 coefficient for 171Yb, by assuming a molecular

potential which consists only of the C6/r
6 part, the hyperfine Hamiltonian HHF and

the resonant dipole interaction resulting in a 1/r3 potential. Diagonalizing this and

perturbatively adding the rotation yields adiabatic potentials, including the purely

long-range states, allows one to solve for the only free parameter, C6. However, these

solutions do not allow for a full multichannel calculation, given that the rotation is

not fully included, nor are all the basis states.

Generally, given that all the amplitude of the purely-long range states is at large

internuclear distance one would expect the purely long-range states to be especially

suitable to the implementation of photoassociation and optical Feshbach resonances

as compared to other states close to dissociation. However, other states at a similar

energy actually have longer range then the purely long-range states, and therefore

the Condon factor between the latter and the ground state is about an order of

magnitude lower than for the former. Thus, the other states are better suited for

these applications.

4.3.3 Excited-State Spectrum

Having obtained the multichannel Hamiltonian as a function of r in the |ε〉 basis, a

discrete variable representation (DVR) method [88, 89] is used to numerically find the

eigenvalues and multichannel wavefunctions. As described by Colbert and Miller [89],

this method is implemented by first choosing an evenly spaced grid ri = a+(b−a)i/N

with N − 1 points, where i is an iterator going from 1 to N − 1 and a and b are the

start and end point of the grid, respectively. The Fourier functions associated with
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Figure 4.8: S-wave spectrum for the bound states of the excited states. The dashed
(red) lines are the results experimental results from [81], while the green lines are from
the full multichannel calculation. It can be seen that the agreement is good. There
are some additional lines from the multichannel calculation, however, these have very
weak Frank-Condon factors, such that they could not be seen experimentally. For
the numerical values of the detuning, see also Table 4.3.

this grid are then

φn(r) =

√
2

b− a
sin

[
nπ(r − a)

b− a

]
, (4.27)

with the iterator n = 1, ..., N − 1. These functions are then used to expand the

kinetic energy operator

T = − ~2

2m

d2

dr2
, (4.28)

which can be written in terms of the Fourier eigenfunctions of the grid to be

Tii′ = − ~2

2m
∆r

N−1∑
n=1

φn(ri)φ
′′
n(r′i), (4.29)

with the grid spacing ∆r = (b − a)/N . Inserting Eq. 4.27 into the above Equation

yields

Tii′ = − ~2

2m

(
π

b− a

)2
2

N

N−1∑
n=1

n2 sin

[
nπi

N

]
sin

[
nπi′

N

]
. (4.30)
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Figure 4.9: P-wave spectrum for the bound states of the excited states. The dashed
(red) lines are the results experimental results from [81], while the solid lines are
from the full multichannel calculation. As for s-waves, the agreement is good and
there are some additional lines from the multichannel calculation which have very
small Frank-Condon factors, such that they could not be seen experimentally. For
the numerical values of the detuning, see also Table 4.4.

Evaluating the sum gives the following formulae for the diagonal and off-diagonal

terms of the kinetic energy matrix

Tii =
~2

2m

π2

2(b− a)2

(
(2N2 + 1)/3− 1

sin2(πi/N)

)
(4.31a)

Tii′ =
~2

2m

π2(−1)(i−i′)

2(b− a)2

(
1

sin2 [π(i− i′)/2N ]
− 1

sin2 [π(i+ i′)/2N ]

)
. (4.31b)

For more details, see Appendix A from [89]. For a single channel, the potential

matrix is a diagonal (N − 1) × (N − 1) matrix, which is added to the potential

energy matrix derived above. For the multichannel problem the grid points and the

different channels are treated on an equal footing, such that the resulting kinetic

energy matrix is N ′ × N ′, where N ′ is the number of grid points times the number

of channels. The diagonalization of the resulting matrix gives the eigenenergies and

the full multichannel eigenfunctions.

The code used for this calculation was written by Julienne and Tiesinga at NIST,

with minor adaptations for the parameters relevant for 171Yb and the required num-

ber of channels. Since the potentials do not change very much at large r, but are

relatively steep at small r, it is advantageous to have more grid points close to the
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Etheory
b (MHz) Eexp

b (MHz) ΓM(kHz) lopt(a0/W/cm2)
26.8 24.7 245 24967
34.9 — 89 6854
49.9 47.8 246 11673
89.1 86.9 248 5527
152.3 149.9 251 2969
250.2 247.0 256 1388
396.5 391.7 261 780
462.1 — 161 12
597.3 — 101 218
612.5 604.3 241 363

Table 4.3: Excited molecular bound states and resonance properties. Etheory
b are the

binding energies found from the multichannel calculation solutions of the Schrödinger
equation with Hamiltonian Eq. (4.14). Binding energies are denoted in frequency
units relative to the atomic 1S0 → 3P1(f = 3/2) transition. For comparison, Eexp

b are
the photoassociation resonances observed by Enomoto et al. with an experimental
uncertainty of ±2MHz. The agreement between experiment and theory is good, with
a small systematic shift that may be attributed to inaccuracies in the Hund’s case-(c)
potentials, and/or to systematic shifts in the experimental conditions (e.g. light-shift
from the confining dipole potential). ΓM is the molecular natural linewidth and lopt
is the optical length at an intensity of 1 W/cm2.

origin than at larger internuclear distances. However, the DVR method requires an

evenly spaced grid. These seemingly contradictory requirements were both fulfilled

by Tiesinga and Julienne by transforming to a different coordinate system in which

y =
2

2− n
α

(r − rs)n/2−1
+ r, (4.32)

where α =
√
Cn/Ekin, with the kinetic energy Ekin and n = 6 for the used Lennard-

Jones potentials. rs is given by 2a− rmin, where rmin is the approximate position of

the minimum of the Lennard-Jones potential. Now the matrix for the DVR method

is constructed on an evenly spaced grid in the coordinate system y.

The block-diagonal structure and, in the absence of magnetic fields, the degen-

eracies of the Hamiltonian can be exploited to greatly reduce the number of channels
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and thus the CPU time required to diagonalize the Hamiltonian. For s-waves, the

Hamiltonian can be reduced to one 5×5 matrix, while for p-waves, 4 different blocks

have to be diagonalized, one with T = 0, which consists of two channels, one with

T = 1, which is a 5×5 matrix, and the last two, with T = 2 and T = 3, respectively,

both of which are 6× 6 matrices (compare to table 4.2).

The resulting bound states represent photoassociation resonances that dissociate

to 1S0 + 3P1(f = 3/2). Their positions relative to the atomic resonance were ex-

perimentally determined by Enomoto et al. [81], allowing for comparison between

experiment and the numerical calculation. Fig. (4.8) and Table (4.3) both show re-

sults for s-wave collisions and Fig. (4.9) and Table (4.4) for p-wave collisions. The

agreement is very good. For s-waves, there is a small systematic shift, which could be

caused by the inaccuracies in the Hund’s case c) potentials, or by systematic shifts

in the experiment. However, for p-waves, the numerical calculation agrees with the

experimental results to within the experimental uncertainty. For both s-waves and

p-waves, there are additional lines in the calculated spectrum as compared to the

experimental spectrum, which have not been found by Enomoto et al, either because

their binding is comparable to their lifetime or because they are too tightly bound

and thus have small Franck-Condon factors.

4.3.4 Scattering Length

The DVR method also yields the multichannel eigenvectors of the bound excited

states, which can be described as

|b〉 =
∑
ε

Ψε(r)|ε〉, (4.33)

where Ψε(r) are the radial eigenfunctions for given partial wave l for channel ε and

|ε〉 are the corresponding spin states in the ε basis. In contrast to the ground state

wave functions, these bound states are unit normalized. These eigenfunctions can
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be used to calculate both the Frank-Condon factors as well as the linewidth of the

excited states, both of which are required for the calculation of the scattering length.

Figure 4.10: The radial parts of two multichannel eigenstates for s-wave scattering.
a) shows the lowest purely long-range state for s-waves, which has a binding energy
of 34.9 MHz relative to the atomic resonance. It can be seen that the complete
amplitude of the purely long-range state is at large internuclear distance. b) shows
the next lower multichannel state for s-waves, with a binding energy of 49.9 MHz.
Even though this state has support ranging to very small r, the bulk of the amplitude
is at even larger internuclear separation than for the purely long-range state, causing
its Frank-Condon factor to be larger than the one for the latter.

The molecular linewidth is calculated in two steps [85], first a linewidth matrix

is determined to be

Γεε′ = ΓA
1

d2
A

∑
εg

〈ε|(d̂mol)q|εg〉〈εg|(d̂mol)′q|ε′〉 (4.34)
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Figure 4.11: The resulting scattering length for s-wave optical Feshbach resonances
at a temperature of 2 µK. The solid (blue) line is the real part of the scattering
length, while the dashed (red) line is the imaginary part, which quantizes the losses.

where |ε〉 and |ε′〉 are the spin parts of the basis states for the excited states in the ε

basis, |εg〉 are the spin states of the ground states, q and q′ are the polarization of the

photons, dA is the atomic electric dipole matrix element and d̂mol is the molecular

dipole operator. The matrix elements of the latter, 〈ε|(d̂mol)q|εg〉 are calculated by

expanding the states in the π basis, as described by Eqs. (4.23) and (4.24) in section

4.2.3. Now the linewidth of the excited bound state can be obtained by integrating

over the radial part of the wave functions (4.33), multiplied with the relevant elements

of the linewidth matrix (4.34)

ΓM =
∑
ee′

∫ ∞
0

drΨe(r)Γee′Ψe′(r). (4.35)

The resulting linewidths for several s-wave states are shown in table 4.3.

The Franck-Condon factor that measures the overlap between the spatial wave

function of the (energy normalized) scattering ground electron state |g〉 at energy E

and the (unit normalized) bound excited state |b〉 is given by [79]

fFC = |〈b|d · εL|g〉|2 /2d2
A, (4.36)
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where dA is the atomic dipole moment for this transition and εL is the laser polar-

ization. Given in Eq. (4.33), Eq. (4.36) can be expanded in the spin part and the

radial part

fFC =

∣∣∣∣∣∑
ε

〈εg|dmol|ε〉
∫ ∞

0

drΨg(r)Ψ
∗
ε(r)

∣∣∣∣∣
2

/2d2
A, (4.37)

Note that this definition of the Frank-Condon factor includes the spin part and is

not limited to the integral over the spatial wave function, as is often the case.

Using this together with Vopt, given in Eq. (4.2) allows us to calculate the optical

length, given in Eq. (4.8). The results for the s-wave photoassociation resonances

near dissociation at a temperature of 2µK can be seen in Table 4.3. These are

calculated at a laser intensity of 1 W/cm2. There are several states, among them the

purely-long range states, for which the Frank-Condon factor and with it the optical

length are comparatively small and therefore these states were not visible in the

experiments by Enomoto et al. [81]. This is due to the fact that these states are

relatively tightly bound.

The real and imaginary parts of the scattering length, given in Eqs. (4.6) and

(4.7) can now be calculated as a function of laser intensity and detuning. Since the

bare s-wave scattering length of 171Yb, abg = −2.83a0, is essentially zero, an OFR

will increase |a| by orders of magnitude, similar to that seen in 88Sr [83]. The results

for s-waves for a temperature of 2 µK can be seen in Fig. 4.11. The p-wave scattering

length is zero at this low temperature, since the centrifugal barrier is too high for

the atoms to interact with each other.

4.4 Application to QIP

As described in section 4.3.1, the parity selection rules make it possible to selectively

change s-waves and p-waves independently from each other. Additionally, as detailed
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in section 2.2, due to symmetry, even partial waves are related to spin singlet state

and odd partial waves to spin triplet states, allowing for the implementation of

two-qubit gates via collisional nuclear spin exchange. The increase of the s-wave

scattering length with the optical Feshbach resonances makes it possible to implement

the two-qubit gate on shorter timescales than otherwise possible. Furthermore, it

is in principle possible to set the p-wave scattering length to zero, thus improving

the fidelity of the gate if p-wave interactions are not sufficiently suppressed due to

low temperatures. In this section, however, I will examine a scheme to implement

the gate at low enough temperature for s-wave collisions to be dominant interaction

in more detail and will determine possible gate times and resulting fidelities. This

proposal is shown schematically in Fig. 4.12

Assuming two atoms in the groundstate of the same optical trap makes it possible

to estimate the duration and fidelity of a
√
SWAP gate. I assume a harmonic

oscillator trap, comparable to the experiments by Anderlini et al. [38], with a ground

state energy corresponding to a temperature of 2µK. Without the Feshbach laser,

the interaction between the atoms and thus the acquired phase shift is very small,

owing to the tiny natural scattering length of -2.83a0 for 171Yb. The utility of the

optical Feshbach resonance for coherent control of nuclear spin exchange depends on

low loss and decoherence. As a figure of merit, consider the example of implementing

a
√
SWAP two-qubit entangling unitary between the spin-1/2 nuclei trapped in one

site of an optical lattice. As discussed in 2.2, such a gate occurs if the relative phase

shift for singlet vs. triplet nuclear spin states is π/2. In the perturbative regime and

neglecting the small background scattering length, the energy shift of two identical

particles due to the interaction is given by U = 4π~2naopt/µ, where n is the atomic

density. Since the p-wave scattering length is zero, the s-wave acquires a collisional

phase shift φ =
∫
U/~ dt = U/~T = (4π~naopt/µ)T relative to the p-wave and the

interaction time T for a
√
SWAP gate becomes then T = µ/(8~naopt). As discussed

in Chapter 2, the loss/decoherence rate is given by Kn = 8π~nbopt/µ. The fidelity
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of the gate based only on this loss is then

F = e−KnT = eπbopt/aopt ≈ e
−(π2 )

“
ΓM
∆

”
. (4.38)

To get an estimate of how well the optical Feshbach resonance induces nuclear spin

exchange, it is necessary to balance a variety of constraints. High fidelity at moderate

intensities requires large detuning from molecular resonance, e.g., a fidelity of 95% is

achieved when ∆ ≈ 30ΓM . Our model, however, assumes sufficiently small detuning

so that a single molecular excited state contributes to the resonance. In addition, to

ensure a reasonably fast interaction, the applied intensity must be sufficiently large

so that the optical scattering length is large, which will power-broaden the atomic

resonance ΓA →
√

1 + I/IsatΓA. For all of these reasons, I consider as an example

the photoassociation resonance bound by 396.5 MHz, with a natural linewidth of

ΓM = 261 kHz. This bound state is still relatively close to dissociation, and thus

the molecule is long-range, with an outer turning point at 130 a0. Nonetheless, the

density of states is sufficiently sparse that one can detune many linewidths from that

resonance while still neglecting coupling to the next higher molecular state, which

is bound by 250.2 MHz and has about twice the Franck-Condon factor. A detuning

from the molecular resonance of ∆ = −30ΓM ≈ −7.8MHz fits this constraint. The

intensity is chosen to broaden the resonance so as to increase the scattering length by

fixing Γstim = 2krloptΓM = −∆, or lopt = 30/kr ≈ 104 a0, at an energy of 2 µK. From

Table 4.3, this is achieved at an intensity of I = 13.8 W/cm2, whereby the atomic

linewidth is power broadened to ΓA → 59 MHz, which is still narrow compared to

a detuning of 400 MHz from dissociation. When −∆ = Γstim � ΓM , the optical

scattering length is aopt ≈ −lopt(4ΓM/5∆) ≈ −287 a0 and the loss coefficient is

Kn ≈ 2.6× 10−16 cm3/s. With this large magnitude scattering length and low loss,

given two 171Yb atoms in a lattice site analogous to the experiments at NIST [38],

the time of the
√
SWAP gate is T ≈ 51.6µs and the gate fidelity is ≈ 95%.

In principle, higher fidelity, larger scattering lengths, and shorter gate times are
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possible, though a proper treatment will require the modelling of excitation to multi-

ple molecular bound states and line broadening. Even with these modest parameters,

we see that optical Feshbach resonances have great potential for control of nuclear-

spin exchange and strong entangling interactions.

Note that this calculation does not take into account the change of the wave

function in the lattice due to the potentially very large scattering length. Generally,

for scattering lengths on the order of the confinement a self-consistent solution is

required, owing to the shift of the trap energy due to the interaction between the

particles [34]. It should be possible to utilize the large induced scattering length to

control the state of the atoms via trap-induced shape resonances, when the atoms

are in neighboring traps [37].

4.5 Conclusions

In this chapter, I described the calculation of the multichannel Hamiltonian for the

1S0 + 3P1 molecular state of 171Yb, an alkaline-earth like atom, including nuclear

spin and hyperfine interaction as well as magnetic fields. Comparison of the re-

sulting spectra with experimental results from photoassociation shows very good

agreement. This calculation points out how to exploit the intercombination line for

the implementation of optical Feshbach resonances, and allows for the prediction

of resulting scattering lengths and useful transition energies and detunings. I dis-

covered two potentials with magnetic-field-dependant barriers and shape resonances,

and showed how the optical Feshbach resonances can be utilized for the manipulation

of nuclear spins, which in turn allows the implementation for quantum information

in alkaline-earth-like atoms. Nuclei do not directly interact, but instead act as a

quantum switch due to the quantum statistics of identical particles [13], allowing

or forbidding the laser coupling to long-range molecular bound states, and thereby

allowing for optical control of nuclear spin-exchange over enormous distances when
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compared to the scales of traditional chemistry.

The multichannel calculations pose some difficulties, given the fact that even

171Yb, which has a nuclear spin of 1/2 gives rise to 89 channels. Other elements with

a larger nuclear spin will have even more channels. Fortunately, the Hamiltonian

is block diagonal in the chosen basis, making the numerical calculation much more

tractable. For 171Yb, with its big hyperfine constant, the magnetic field will be small

in comparison to the hyperfine splitting, thus f and mf are good quantum numbers,

and the Hamiltonian will be block diagonal for all experimentally relevant magnetic

fields. This, however, is not necessarily true for elements with smaller hyperfine

constant, possibly leading to a much more memory-intense calculation.

In the near future, I plan on calculating the resulting Feshbach resonances for

p-waves. Most of the required steps are already complete and only have to be put

together. Another important direction for this project is the inclusion of multiple

resonances at once, thus extending the current model of optical Feshbach resonances

in which only one excited state resonance is considered. This might lead to interesting

interference effects and more accurate calculations, especially for the case of very

large detuning from a specific line, in which additional, higher lying bound states

which usually have a larger Frank Condon factor can be coupled to the scattering

state.

Optical Feshbach resonances open up new directions in the research of ultra-

cold gases, lead to new possibilities in the implementation of quantum information

processing and metrology and allow for the investigation of cold molecules. They

extend the very interesting research that has been done in the control of scattering

processes to additional elements without multiple hyperfine sublevels and allow for

the additional use of magnetic fields in the control of atoms, which is impossible

during the use of magnetic Feshbach resonances.
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Etheo
b (MHz) Eexp

b (MHz)
3.1 —
3.1 —
3.2 —
3.2 —
3.3 —
3.4 —
3.5 —
4.0 —
4.2 —
4.4 —
4.8 —
5.5 —
6.5 —
7.3 —
7.6 —
8.0 —
12.2 —
12.4 —
13.9 —
15.1 —
16.4 —
21.8 —
24.7 —
27.3 —
28.2 —
29.3 —
35.3 —
42.2 —
47.7 —
51.9 —
54.9 —
60.3 —

Etheo
b (MHz) Eexp

b (MHz)
71.3 —
77.1 —
88.0 —
94.1 —
98.6 —
117.8 —
133.8 —
154.2 —
163.0 —
169.3 —
212.0* 212.4
233.8* 234.0
258.2 256.9
270.4 268.3
278.9 276.8
355.3* 355.4
383.2* 383.4
415.5 416.1
431.9 432.0
443.2 442.5
559.8 —
593.9 —
646.3 646.2
666.9 —
667.7 667.2
682.4 681.8
741.8 —
790.7 —
821.1 —
976.0 976.2
1003.5 1002.1
1022.1 1021.4

Table 4.4: P-wave accessible excited molecular bound states. Etheo
b are the binding

energies found from the multichannel calculation as in Table 4.3. The lines which
were also experimentally observed by Enomoto et al. at a temperature of 25µK are
shown for comparison. Their experimental uncertainty is ±2MHz and ±1 MHz for
the PLR states denoted by *.
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Figure 4.12: Schematic of the optical Feshbach resonance leading to nuclear spin
exchange. Shown in (a) is the interaction for the case of a nuclear spin singlet
state. A laser photon with energy ~ωL, detuned by ∆ from a molecular bound
state, excites two atoms colliding with relative momentum ~kr and relative angular
momentum l = 0, which in turn leads to a phase shift for these s-waves. For nuclear
spin triplet, s-wave collisions are forbidden by the Pauli exclusion principle. Shown
in (b) is a p-wave scattering state for the spin polarized nuclei and a different set of
excited potentials, accessible according to the selection rules. The p-wave phase shift
is negligible because low energy collisions cannot penetrate the centrifugal barrier
into the region, and thus laser photons cannot excite bound molecules due to the
negligible Franck-Condon overlap. The relative phase between s-wave and p-wave
collisions correlates with a relative phase between nuclear spin singlet and triplet,
and thus leads to a nuclear spin-exchange force.
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Figure 4.13: The fidelity of a
√
SWAP gate assuming a temperature of 2 µK and a

laser power of 1 W/cm2. It can be seen that the loss of fidelity due to the imaginary
part of the scattering length bopt is reasonably small, depending on the detuning.
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Chapter 5

Summary and Outlook

In this thesis I discussed several aspects of quantum control of alkaline-earth-like

atoms, particularly in the context of the implementation of QIP. Due to their rich

but tractable internal structure, decoupled nuclear spin in the ground state and both

conveniently accessible and extremely narrow intercombination transitions, alkaline-

earth-like atoms are particularly well suited for these applications, as well as for

the implementation of atomic clocks. The possibility to store quantum information

in the nuclear spin allows for very long coherence times, while the application of

Feshbach resonances allow for relatively fast gates.

As discussed in Chapter 3, the unique properties of alkaline-earth-like atoms

make it possible to recool the vibrational degrees of freedom of nuclear-spin qubits

via laser cooling, by utilizing magnetic fields and thus decoupling the nuclear spin

from the electronic angular momentum in the excited 3P0 state. Alternatively, the

combination of magnetic fields and off-resonant scattering requires weaker magnetic

fields, thus posing some advantages for 171Yb. Since the manipulation of qubits

usually causes their heating, which generally leads to increased decoherence and

degrading of the fidelity of qubit gates, the ability to recool the qubits with relative

ease is an important stepping stone towards a truly scalable quantum computer.
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With the protocol explained in Chapter 3 in detail for both 171Yb and 87Sr and

published in [30], it is possible to recool the qubits between and even during the

implementation of successive qubit gates.

In Chapter 4, I examined the promise of alkaline-earth-like atoms for the imple-

mentation of optical Feshbach resonances. Calculation of the relevant parameters

requires very accurate modeling of both the ground state potentials and the ex-

cited state potentials, including rotation, hyperfine interaction, and magnetic fields.

Comparison of the resulting spectra with experimental results from photoassocia-

tion shows very good agreement. This was the first calculation including all these

effects in alkaline-earth-like atoms. Due to the symmetry of the problem, it is pos-

sible to change the scattering length of s-waves and p-waves independently from

each other, allowing unprecedented control over the scattering properties of these

ultracold atoms. Additionally, in the progress of this work I discovered that the ex-

tremely shallow purely long-range potentials of 171Yb for s-waves change their shape

and develop a barrier in the presence of a magnetic field. Furthermore, I showed

how strong entangling interactions can be induced between nuclei over hundreds of

angstroms based on optical Feshbach resonances between pairs of 171Yb atoms. Nu-

clei do not directly interact, but instead act as a quantum switch due to the quantum

statistics of identical particles [13], allowing or forbidding the laser coupling to long-

range molecular bound states, and thereby allowing for optical control of nuclear

spin-exchange over enormous distances when compared to the scales of traditional

chemistry. The combination of this tool, together with recent advances in loading

optical lattices via superfluid to mott-insulator phase transition [19], the ability to

optically manipulate nuclear spin coherence [52] and re-cool atoms without deco-

hering nuclear spins, and proposals for quantum logic [13, 22, 66] make this system

attractive for new applications in quantum information processing.

The work described in this dissertation suggests several logical directions for ad-

ditional research. For the resolved-sideband cooling scheme, there might be possibil-
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ities other than strong magnetic fields to decouple the nuclear spin from the electron

angular momentum, for example dynamical decoupling with optical or microwave

fields. However, preliminary research in this direction has not yielded useful results.

In the context of the optical Feshbach resonances described in Chapter 4, there are

more additional directions for research possible. The first logical step is to calculate

the optically induced scattering lengths for p-waves in detail, and to find the laser

intensities and frequencies required for the independent manipulation for s-waves

and p-waves. Additionally, while the calculation is set up to allow for the inclusion

of magnetic fields, no systematic investigation of the effects of magnetic fields on

the different levels of the excited states and on the optical Feshbach resonances has

yet been carried out. The inclusion of magnetic fields is especially important in the

light of the resolved-sideband cooling scheme described in Chapter 3, which requires

a strong magnetic field. Furthermore, the manipulation of the purely-long range

states for s-waves with magnetic fields induces barriers in the potentials, which can

potentially lead to shape-resonances, when a scattering state, which is at the same

energy as a quasi-bound state, tunnels through the barrier. This should allow for

large scattering lengths for excited scattering states of a well-defined and controllable

energy.

Another important step in the calculation of optical Feshbach resonances is the

inclusion of several excited states instead of only the state with the highest Condon-

factor. This is especially important for large detunings, since then optical coupling

to several different excited states at once can play a role. This can possibly lead to

interferences between the optical Feshbach resonances to the different levels, render-

ing the predictions of a single state model inaccurate. Due to the close relationship

of photoassociation and optical Feshbach resonances, the accurate determination of

the excited state potentials required for the prediction of optical Feshbach resonances

is the same as for the prediction of photoassociation. Therefore, the calculation in

this dissertation can be used as a help in the quest for the production of ultracold
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molecules, a difficult task due to the absence of cycling transitions for optical cool-

ing in molecules. However, photoassociation could make the production of ultracold

molecules possible, e.g. by applying it to an optical lattice with two atoms per lattice

site, thus creating an optical lattice with one molecule per lattice site.

In addition to being the basis of quantum information processing, the ability to

implement entangling two-body interactions between atoms can be utilized in the

improvement of atomic clocks, thus leading to new basic research, e. g. in the

investigation of the time-dependence of fundamental constants. The accuracy of

atomic clocks scales as a/
√
N for unentangled particles, however, if the N atoms

that are interrogated for the clock are in an entangled state, accuracy scales as 1/N .

Thus, for a clock consisting of alkaline-earth-like atoms in an optical lattice, the

accuracy can be noticeably improved by first entangling the atoms with each other

and then implementing the clock.

There are also several more long-term prospects in the continuation fo this re-

search, e. g. the combination of optical Feshbach resonances with confinement-

induced shape resonances, which were described by Stock et al. [90]. These reso-

nances occur when two traps with one atom confined in each are moved relative to

each other. The molecular potential of the two atoms is shifted up depending on the

relative distance between the centers of the traps, and for the right distance between

the traps the highest molecular bound state is resonant with the trap eigenstates,

causing an avoided crossing in the energies of the trap eigenstates. The size of the

effect depends on the scattering length of the trapped atoms and a large scatter-

ing length is necessary to observe this effect. Therefore, increasing the scattering

length via optical Feshbach resonances can help in observing this effect in alkaline-

earth-like atoms. This can be used in the implementation of quantum information

processing, by implementing gates between two atoms in neighboring traps, as de-

scribed for alkali-atoms in [28]. The difference to the system described here is that

the qubits are stored in the nuclear spin of the alkaline-earth-like atoms. Further-
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more, confinement-induced shape resonances can also be used for the creation of cold

molecules, in that the scattering length between two atoms in neighboring traps is

increased, causing the avoided crossing. Then the traps are slowly moved together,

with the atoms adiabatically following the avoided crossing, and thus being trans-

ferred to the molecular bound states.

Since optical Feshbach resonances can be controlled with much higher temporal

and spatial resolution than magnetic Feshbach resonances, their application opens

the door to new experiments in many-body physics. One example of this is the possi-

bility to overlay an ultracold gas of atoms in an optical lattice with optical Feshbach

lasers of spatially varying intensity. This would allow for a trapped quantum gas

which has different regions with varying scattering lengths and is thus in different

quantum phases, making new research in the investigation of quantum phase transi-

tions possible. Additionally, combining spatially varying optical Feshbach resonances

with the scheme to produce cold molecules with confinement-induced resonances as

described above, allows for the creation of an optical lattice which is partly filled

with ultracold molecules and partly with ultracold atoms, with control of the exact

position of the different phases in the optical lattice.

The multichannel calculation, while very accurate, poses some challenges. Due

to the large number of channels for higher partial waves or larger nuclear spin, the

size of the matrix that has to be diagonalized can become rather large. Even though

171Yb has a nuclear spin of only 1/2, the number of channels required for the p-

wave calculation is already 89. While this can easily be simplified due to fact that

the Hamiltonian is block-diagonal under some circumstances, this is not necessarily

always the case, especially in the presence of very high magnetic fields. Therefore,

the requirements on the cpu-time and especially memory can easily get too high for

practical purposes, depending on the nuclear spin and the desired partial waves.

Altogether, I hope that this dissertation has shed some light on the fact that

trapped, ultracold alkaline-earth-like atoms are a very promising system for quan-
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tum control and quantum information processing. They have the potential to open

up new avenues for interesting basic research and applications and to contribute to

the impressive renewal of AMO physics of the last few decades, as well as to the im-

plementation of quantum information processing. Hopefully, additional experimental

and theoretical studies will lead to the realization of this potential.
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Appendix A

Programs

In this appendix I will show several different Mathematica programs which were used

for the calculations described in different parts of this dissertation.

A.1 Calculation of the Breit-Rabi spectrum

This Mathematica program was used to calculate the spectrum for 171Yb in a mag-

netic field as well as the different resulting c-factors from Eq. (3.40) and the fidelity

resulting from application of the magnetic field for the cooling scheme described in

Chapter 3
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A.2 Inclusion of the quadrupole part for Sr

This program is similar to the one in Appendix A.1, but it includes the quadrupole

part of the Zeeman interaction and is thus suitable for 87Sr. It was thus used to

numerically calculate the spectrum for 87Yb in a magnetic field and the fidelity for

the cooling scheme described in Chapter 3
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A.3 Calculation of the multichannel Hamiltonian

This Mathematica 6 program was used to determine the full multichannel Hamil-

tonian from the transformations between the different bases described in Chapter

4. Furthermore, it was used to find the adiabatic potentials and the linewidthma-

trix from the same chapter. The resulting, block diagonal Hamiltonian was then

exported into a fortran Code based on a code by E. Tiesinga and P. Julienne from

NIST which used the DVR method described in Section 4.2.2 to yield the multichan-

nel wave functions.
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A.4 Determination of the optically induced scat-

tering length

This program first determines the Condon factors and linewidths from the multi-

channel wave functions calculated with fortran and the uses these to calculate the

real and imaginary parts of the scattering length optically induced via the Feshbach

resonance.
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