1,943 research outputs found
Effect of peat quality on microbial greenhouse gas formation in an acidic fen
Peatlands play an important role in the global carbon cycle and represent
both an important stock of soil carbon and a substantial natural source of
relevant greenhouse gases like CO<sub>2</sub> and CH<sub>4</sub>. While it is known that
the quality of organic matter affects microbial degradation and
mineralization processes in peatlands, the manner in which the quality of
peat organic matter affects the formation of CO<sub>2</sub> and CH<sub>4</sub> remains
unclear. In this study we developed a fast and simple peat quality index in
order to estimate its potential greenhouse gas formation by linking the
thermo-degradability of peat with potential anaerobic CO<sub>2</sub> and CH<sub>4</sub>
formation rates. Peat samples were obtained at several depths (0–40 cm) at
four sampling locations from an acidic fen (pH 4.7). CO<sub>2</sub> and
CH<sub>4</sub> formation rates were highly spatially variable and depended on
depth, sampling location, and the composition of pyrolysable organic matter.
Peat samples active in CO<sub>2</sub> and CH<sub>4</sub> formation had a quality index
above 1.35, and the fraction of thermally labile pyrolyzable organic matter
(comparable to easily available carbon substrates for microbial activity)
obtained by thermogravimetry was above 35%. Curie-point pyrolysis-gas
chromatography/mass spectrometry mainly identified carbohydrates and lignin
as pyrolysis products in these samples, indicating that undecomposed organic
matter was found in this fraction. In contrast, lipids and unspecific
pyrolysis products, which indicate recalcitrant and highly decomposed
organic matter, correlated significantly with lower CO<sub>2</sub> formation and
reduced methanogenesis. Our results suggest that undecomposed organic matter
is a prerequisite for CH<sub>4</sub> and CO<sub>2</sub> development in acidic fens.
Furthermore, the new peat quality index should aide the estimation of
potential greenhouse gas formation resulting from peatland restoration and
permafrost thawing and help yield more robust models of trace gas fluxes
from peatlands for climate change research
Magnetization reversal and local switching fields of ferromagnetic Co/Pd microtubes with radial magnetization
Three-dimensional nanomagnetism is a rapidly growing field of research covering both noncollinear spin textures and curved magnetic geometries including microtubular structures. We spatially resolve the field-induced magnetization reversal of free-standing ferromagnetic microtubes utilizing multifrequency magnetic force microscopy (MFM). The microtubes are composed of Co/Pd multilayer films with perpendicular magnetic anisotropy that translates to an anisotropy with radial easy axis upon rolling-up. Simultaneously mapping the topography and the perpendicular magnetostatic force derivative, the relation between surface angle and local magnetization configuration is evaluated for a large number of locations with slopes exceeding 45 degrees. The angle-dependence of the switching field is concurrent with the Kondorsky model, i.e., the rolled-up nanomembrane behaves like a planar magnetic film with perpendicular anisotropy and a pinning dominated magnetization reversal. Additionally, we discuss methodological challenges when detecting magnetostatic force derivatives near steep surfaces
Microbial reduction of iron and porewater biogeochemistry in acidic peatlands
International audienceTemporal drying of upper soil layers of acidic methanogenic peatlands might divert the flow of reductants from CH4 formation to other electron-accepting processes due to a renewal of alternative electron acceptors. In this study, we evaluated the in situ relevance of Fe(III)-reducing microbial activities in peatlands of a forested catchment that differed in their hydrology. Intermittent seeps reduced sequentially nitrate, Fe(III), and sulfate during periods of water saturation. Due to the acidic soil conditions, released Fe(II) was transported with the groundwater flow and accumulated as Fe(III) in upper soil layers of a lowland fen apparently due to oxidation. Microbial Fe(III) reduction in the upper soil layer accounted for 26.7 and 71.6% of the anaerobic organic carbon mineralization in the intermittent seep and the lowland fen, respectively. In an upland fen not receiving exogenous Fe, Fe(III) reduction contributed only to 6.7%. Fe(II) and acetate accumulated in deeper porewater of the lowland fen with maximum concentrations of 7 and 3 mM, respectively. Both supplemental glucose and acetate stimulated the reduction of Fe(III) indicating that fermentative, incomplete, and complete oxidizers were involved in Fe(II) formation in the acidic fen. Amplification of DNA yielded PCR products specific for Acidiphilium-, Geobacter-, and Geothrix-, but not for Shewanella- or Anaeroromyxobacter-related sequences. Porewater biogeochemistry observed during a 3-year-period suggests that increased drought periods and subsequent intensive rainfalls due to global climate change will further favor Fe(III) and sulfate as alternative electron acceptors due to the storage of their reduced compounds in the soil
Investigation of implantation-induced damage in indium phosphide for layer transfer applications
100 keV H+ and He+ ion implantation was performed in 300 µm thick (100) InP substrates at liquid nitrogen temperature with a constant fluence of 1 × 1017 cm–2. The surface morphology of the as-implanted InP samples was studied by optical microscopy. The implantation-induced damage was investigated by cross-sectional TEM, which revealed the formation of damage band in both cases near to the projected range of implanted ions. The formation of hydrogen-induced nanocracks and helium filled nanobubbles was observed in as-implanted InP samples.
When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/2792
Transport through open quantum dots: making semiclassics quantitative
We investigate electron transport through clean open quantum dots (quantum
billiards). We present a semiclassical theory that allows to accurately
reproduce quantum transport calculations. Quantitative agreement is reached for
individual energy and magnetic field dependent elements of the scattering
matrix. Two key ingredients are essential: (i) inclusion of pseudo-paths which
have the topology of linked classical paths resulting from diffraction in
addition to classical paths and (ii) a high-level approximation to diffractive
scattering. Within this framework of the pseudo-path semiclassical
approximation (PSCA), typical shortcomings of semiclassical theories such as
violation of the anti-correlation between reflection and transmission and the
overestimation of conductance fluctuations are overcome. Beyond its predictive
capabilities the PSCA provides deeper insights into the quantum-to-classical
crossover.Comment: 20 pages, 19 figure
Design considerations for table-top, laser-based VUV and X-ray free electron lasers
A recent breakthrough in laser-plasma accelerators, based upon ultrashort
high-intensity lasers, demonstrated the generation of quasi-monoenergetic
GeV-electrons. With future Petawatt lasers ultra-high beam currents of ~100 kA
in ~10 fs can be expected, allowing for drastic reduction in the undulator
length of free-electron-lasers (FELs). We present a discussion of the key
aspects of a table-top FEL design, including energy loss and chirps induced by
space-charge and wakefields. These effects become important for an optimized
table-top FEL operation. A first proof-of-principle VUV case is considered as
well as a table-top X-ray-FEL which may open a brilliant light source also for
new ways in clinical diagnostics.Comment: 6 pages, 4 figures; accepted for publication in Appl. Phys.
Si-compatible candidates for high-K dielectrics with the Pbnm perovskite structure
We analyze both experimentally (where possible) and theoretically from
first-principles the dielectric tensor components and crystal structure of five
classes of Pbnm perovskites. All of these materials are believed to be stable
on silicon and are therefore promising candidates for high-K dielectrics. We
also analyze the structure of these materials with various simple models,
decompose the lattice contribution to the dielectric tensor into force constant
matrix eigenmode contributions, explore a peculiar correlation between
structural and dielectric anisotropies in these compounds and give phonon
frequencies and infrared activities of those modes that are infrared-active. We
find that CaZrO_3, SrZrO_3, LaHoO_3, and LaYO_3 are among the most promising
candidates for high-K dielectrics among the compounds we considered.Comment: 17 pages, 9 figures, 4 tables. Supplementary information:
http://link.aps.org/supplemental/10.1103/PhysRevB.82.064101 or
http://www.physics.rutgers.edu/~sinisa/highk/supp.pd
- …
