111 research outputs found

    CDCOCA: A statistical method to define complexity dependence of co-occuring chromosomal aberrations

    Full text link
    Background Copy number alterations (CNA) play a key role in cancer development and progression. Since more than one CNA can be detected in most tumors, frequently co-occurring genetic CNA may point to cooperating cancer related genes. Existing methods for co-occurrence evaluation so far have not considered the overall heterogeneity of CNA per tumor, resulting in a preferential detection of frequent changes with limited specificity for each association due to the high genetic instability of many samples. Method We hypothesize that in cancer some linkage-independent CNA may display a non-random co-occurrence, and that these CNA could be of pathogenetic relevance for the respective cancer. We also hypothesize that the statistical relevance of co-occurring CNA may depend on the sample specific CNA complexity. We verify our hypotheses with a simulation based algorithm CDCOCA (complexity dependence of co-occurring chromosomal aberrations). Results Application of CDCOCA to example data sets identified co-occurring CNA from low complex background which otherwise went unnoticed. Identification of cancer associated genes in these co-occurring changes can provide insights of cooperative genes involved in oncogenesis. Conclusions We have developed a method to detect associations of regional copy number abnormalities in cancer data. Along with finding statistically relevant CNA co-occurrences, our algorithm points towards a generally low specificity for co-occurrence of regional imbalances in CNA rich samples, which may have negative impact on pathway modeling approaches relying on frequent CNA events

    Naturally occurring genotype 2b/1a hepatitis C virus in the United States

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatitis C Virus (HCV) infected patients are frequently repeatedly exposed to the virus, but very few recombinants between two genotypes have been reported.</p> <p>Findings</p> <p>We describe the discovery of an HCV recombinant using a method developed in a United States clinical lab for HCV genotyping that employs sequencing of both 5' and 3' portions of the HCV genome. Over twelve months, 133 consecutive isolates were analyzed, and a virus from one patient was found with discordant 5' and 3' sequences suggesting it was a genotype 2b/1a recombinant. We ruled out a mixed infection and mapped a recombination point near the NS2/3 cleavage site.</p> <p>Conclusions</p> <p>This unique HCV recombinant virus described shares some features with other recombinant viruses although it is the only reported recombinant of a genotype 2 with a subtype 1a. This recombinant represents a conundrum for current clinical treatment guidelines, including treatment with protease inhibitors. This recombinant is also challenging to detect by the most commonly employed methods of genotyping that are directed primarily at the 5' structural portion of the HCV genome.</p

    Functional relevance of novel p300-mediated lysine 314 and 315 acetylation of RelA/p65

    Get PDF
    Nuclear factor kappaB (NF-kappaB) plays an important role in the transcriptional regulation of genes involved in immunity and cell survival. We show here in vitro and in vivo acetylation of RelA/p65 by p300 on lysine 314 and 315, two novel acetylation sites. Additionally, we confirmed the acetylation on lysine 310 shown previously. Genetic complementation of RelA/p65-/- cells with wild type and non-acetylatable mutants of RelA/p65 (K314R and K315R) revealed that neither shuttling, DNA binding nor the induction of anti-apoptotic genes by tumor necrosis factor alpha was affected by acetylation on these residues. Microarray analysis of these cells treated with TNFalpha identified specific sets of genes differently regulated by wild type or acetylation-deficient mutants of RelA/p65. Specific genes were either stimulated or repressed by the acetylation-deficient mutants when compared to RelA/p65 wild type. These results support the hypothesis that site-specific p300-mediated acetylation of RelA/p65 regulates the specificity of NF-kappaB dependent gene expressio

    Gene expression signatures of pathways alterations in tumor cells caused by plant extracts

    Get PDF
    Extracts of Viscum album from different host trees (Iscador®Qu, M, P and A) and isolated mistletoe lectin showed distinct gene-expression profiles using cDNA microarrays. We were able to confirm that genes of apoptosis, the cell cycle and the immune system were affected by mistletoe preparations and we also found that signal transduction, cell communication and cancer related pathways were overregulated in the tested breast cancer (HCC-1937, MCF-7, KPL-1, Mfm-223) and lymphoma cell lines (WSZ-NHL). The effect of a specific mistletoe extract on a particular cell line was individual, so that the distinction between the reaction of the cell type and/or the influence of the mistletoe preparation could be used in targeted mistletoe therapy

    Synthetic transactivation screening reveals ETV4 as broad coactivator of hypoxia-inducible factor signaling

    Get PDF
    The human prolyl-4-hydroxylase domain (PHD) proteins 1-3 are known as cellular oxygen sensors, acting via the degradation of hypoxia-inducible factor (HIF) α-subunits. PHD2 and PHD3 genes are inducible by HIFs themselves, suggesting a negative feedback loop that involves PHD abundance. To identify novel regulators of the PHD2 gene, an expression array of 704 transcription factors was screened by a method that allows distinguishing between HIF-dependent and HIF-independent promoter regulation. Among others, the E-twenty six transcription factor ETS translocation variant 4 (ETV4) was found to contribute to PHD2 gene expression particularly under hypoxic conditions. Mechanistically, complex formation between ETV4 and HIF-1/2α was observed by mammalian two-hybrid and fluorescence resonance energy transfer analysis. HIF-1α domain mapping, CITED2 overexpression and factor inhibiting HIF depletion experiments provided evidence for cooperation between HIF-1α and p300/CBP in ETV4 binding. Chromatin immunoprecipitation confirmed ETV4 and HIF-1α corecruitment to the PHD2 promoter. Of 608 hypoxically induced transcripts found by genome-wide expression profiling, 7.7% required ETV4 for efficient hypoxic induction, suggesting a broad role of ETV4 in hypoxic gene regulation. Endogenous ETV4 highly correlated with PHD2, HIF-1/2α and several established markers of tissue hypoxia in 282 human breast cancer tissue samples, corroborating a functional interplay between the ETV4 and HIF pathway

    Intrinsic TGF-β signaling attenuates proximal tubule mitochondrial injury and inflammation in chronic kidney disease

    Full text link
    Excessive TGF-β signaling and mitochondrial dysfunction fuel chronic kidney disease (CKD) progression. However, inhibiting TGF-β failed to impede CKD in humans. The proximal tubule (PT), the most vulnerable renal segment, is packed with giant mitochondria and injured PT is pivotal in CKD progression. How TGF-β signaling affects PT mitochondria in CKD remained unknown. Here, we combine spatial transcriptomics and bulk RNAseq with biochemical analyses to depict the role of TGF-β signaling on PT mitochondrial homeostasis and tubulo-interstitial interactions in CKD. Male mice carrying specific deletion of Tgfbr2 in the PT have increased mitochondrial injury and exacerbated Th1 immune response in the aristolochic acid model of CKD, partly, through impaired complex I expression and mitochondrial quality control associated with a metabolic rewiring toward aerobic glycolysis in the PT cells. Injured S3T2 PT cells are identified as the main mediators of the maladaptive macrophage/dendritic cell activation in the absence of Tgfbr2. snRNAseq database analyses confirm decreased TGF-β receptors and a metabolic deregulation in the PT of CKD patients. This study describes the role of TGF-β signaling in PT mitochondrial homeostasis and inflammation in CKD, suggesting potential therapeutic targets that might be used to mitigate CKD progression

    D-MaPs - DNA-microarray projects: Web-based software for multi-platform microarray analysis

    Get PDF
    The web application D-Maps provides a user-friendly interface to researchers performing studies based on microarrays. The program was developed to manage and process one- or two-color microarray data obtained from several platforms (currently, GeneTAC, ScanArray, CodeLink, NimbleGen and Affymetrix). Despite the availability of many algorithms and many software programs designed to perform microarray analysis on the internet, these usually require sophisticated knowledge of mathematics, statistics and computation. D-maps was developed to overcome the requirement of high performance computers or programming experience. D-Maps performs raw data processing, normalization and statistical analysis, allowing access to the analyzed data in text or graphical format. An original feature presented by D-Maps is GEO (Gene Expression Omnibus) submission format service. The D-MaPs application was already used for analysis of oligonucleotide microarrays and PCR-spotted arrays (one- and two-color, laser and light scanner). In conclusion, D-Maps is a valuable tool for microarray research community, especially in the case of groups without a bioinformatic core

    A MicroRNA Next-Generation-Sequencing Discovery Assay (miND) for Genome-Scale Analysis and Absolute Quantitation of Circulating MicroRNA Biomarkers

    Full text link
    The plasma levels of tissue-specific microRNAs can be used as diagnostic, disease severity and prognostic biomarkers for chronic and acute diseases and drug-induced injury. Thereby, the combination of diverse microRNAs into biomarker signatures using multivariate statistics seems especially powerful from the perspective of tissue and condition specific microRNA shedding into the plasma. Although next-generation sequencing (NGS) technology enables one to analyse circulating microRNAs on a genome-scale level, it suffers from potential biases (e.g., adapter ligation bias) and lacks absolute transcript quantitation as well as tailor-made quality controls. In order to develop a robust NGS discovery assay for genome-scale quantitation of circulating microRNAs, we first evaluated the sensitivity, repeatability and ligation bias of four commercially available small RNA library preparation protocols. The protocol from RealSeq Biosciences was selected based on its performance and usability and coupled with a novel panel of exogenous small RNA spike-in controls to enable quality control and absolute quantitation, thus ensuring comparability of data across independent NGS experiments. The established microRNA Next-Generation-Sequencing Discovery Assay (miND) was validated for its relative accuracy, precision, analytical measurement range and sequencing bias and was considered fit-for-purpose for microRNA biomarker discovery. Summarized, all these criteria were met, and thus, our analytical platform is considered fit-for-purpose for microRNA biomarker discovery from biofluids in the setting of any diagnostic, prognostic or patient stratification need. The established miND assay was tested on serum, cerebrospinal fluid (CSF), synovial fluid (SF) and extracellular vesicles (EV) extracted from cell culture medium of primary cells and proved its potential to be used across different sample types

    Three New Structures of Left-Handed RadA Helical Filaments: Structural Flexibility of N-Terminal Domain Is Critical for Recombinase Activity

    Get PDF
    RecA family proteins, including bacterial RecA, archaeal RadA, and eukaryotic Dmc1 and Rad51, mediate homologous recombination, a reaction essential for maintaining genome integrity. In the presence of ATP, these proteins bind a single-strand DNA to form a right-handed nucleoprotein filament, which catalyzes pairing and strand exchange with a homologous double-stranded DNA (dsDNA), by as-yet unknown mechanisms. We recently reported a structure of RadA left-handed helical filament, and here present three new structures of RadA left-handed helical filaments. Comparative structural analysis between different RadA/Rad51 helical filaments reveals that the N-terminal domain (NTD) of RadA/Rad51, implicated in dsDNA binding, is highly flexible. We identify a hinge region between NTD and polymerization motif as responsible for rigid body movement of NTD. Mutant analysis further confirms that structural flexibility of NTD is essential for RadA's recombinase activity. These results support our previous hypothesis that ATP-dependent axial rotation of RadA nucleoprotein helical filament promotes homologous recombination

    EzArray: A web-based highly automated Affymetrix expression array data management and analysis system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Though microarray experiments are very popular in life science research, managing and analyzing microarray data are still challenging tasks for many biologists. Most microarray programs require users to have sophisticated knowledge of mathematics, statistics and computer skills for usage. With accumulating microarray data deposited in public databases, easy-to-use programs to re-analyze previously published microarray data are in high demand.</p> <p>Results</p> <p>EzArray is a web-based Affymetrix expression array data management and analysis system for researchers who need to organize microarray data efficiently and get data analyzed instantly. EzArray organizes microarray data into projects that can be analyzed online with predefined or custom procedures. EzArray performs data preprocessing and detection of differentially expressed genes with statistical methods. All analysis procedures are optimized and highly automated so that even novice users with limited pre-knowledge of microarray data analysis can complete initial analysis quickly. Since all input files, analysis parameters, and executed scripts can be downloaded, EzArray provides maximum reproducibility for each analysis. In addition, EzArray integrates with Gene Expression Omnibus (GEO) and allows instantaneous re-analysis of published array data.</p> <p>Conclusion</p> <p>EzArray is a novel Affymetrix expression array data analysis and sharing system. EzArray provides easy-to-use tools for re-analyzing published microarray data and will help both novice and experienced users perform initial analysis of their microarray data from the location of data storage. We believe EzArray will be a useful system for facilities with microarray services and laboratories with multiple members involved in microarray data analysis. EzArray is freely available from <url>http://www.ezarray.com/</url>.</p
    corecore