51 research outputs found

    The age of brain organoids : tailoring cell identity and functionality for normal brain development and disease modeling

    Get PDF
    Over the past years, brain development has been investigated in rodent models, which were particularly relevant to establish the role of specific genes in this process. However, the cytoarchitectonic features, which determine neuronal network formation complexity, are unique to humans. This implies that the developmental program of the human brain and neurological disorders can only partly be reproduced in rodents. Advancement in the study of the human brain surged with cultures of human brain tissue in the lab, generated from induced pluripotent cells reprogrammed from human somatic tissue. These cultures, termed brain organoids, offer an invaluable model for the study of the human brain. Brain organoids reproduce the cytoarchitecture of the cortex and can develop multiple brain regions and cell types. Integration of functional activity of neural cells within brain organoids with genetic, cellular, and morphological data in a comprehensive model for human development and disease is key to advance in the field. Because the functional activity of neural cells within brain organoids relies on cell repertoire and time in culture, here, we review data supporting the gradual formation of complex neural networks in light of cell maturity within brain organoids. In this context, we discuss how the technology behind brain organoids brought advances in understanding neurodevelopmental, pathogen-induced, and neurodegenerative diseases

    Human cerebral organoids and fetal brain tissue share proteomic similarities

    Get PDF
    The limited access to functional human brain tissue has led to the development of stem cell-based alternative models. The differentiation of human pluripotent stem cells into cerebral organoids with self-organized architecture has created novel opportunities to study the early stages of the human cerebral formation. Here we applied state-of-the-art label-free shotgun proteomics to compare the proteome of stem cell-derived cerebral organoids to the human fetal brain. We identified 3,073 proteins associated with different developmental stages, from neural progenitors to neurons, astrocytes, or oligodendrocytes. The major protein groups are associated with neurogenesis, axon guidance, synaptogenesis, and cortical brain development. Glial cell proteins related to cell growth and maintenance, energy metabolism, cell communication, and signaling were also described. Our data support the variety of cells and neural network functional pathways observed within cell-derived cerebral organoids, confirming their usefulness as an alternative model. The characterization of brain organoid proteome is key to explore, in a dish, atypical and disrupted processes during brain development or neurodevelopmental, neurodegenerative, and neuropsychiatric diseases7CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFINANCIADORA DE ESTUDOS E PROJETOS - FINEPFUNDAÇÃO CARLOS CHAGAS FILHO DE AMPARO À PESQUISA DO ESTADO DO RIO DE JANEIRO - FAPERJFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPNão temNão temNão temNão tem14/21035-0; 16/07332-7; 13/08711-3; 14/10068-4JN, VS-C, and DM-D-S are supported by the São Paulo Research Foundation (FAPESP) grants 14/21035-0, 16/07332-7, 13/08711-3, and 14/10068-4. CS was recipient of a CAPES-FAPERJ Postdoc fellowship. Other funds are provided by the National Council for Scientific and Technological Development (CNPq), the Instituto Nacional de Ciência e Tecnologia de Neurociência Translacional (INCT-INNT), Foundation for Research Support in the State of Rio de Janeiro (FAPERJ), Coordination for the Improvement of Higher Education Personnel (CAPES), Brazilian Funding Authority for Studies and Projects (FINEP), and Brazilian Development Bank (BNDES

    Normal Human Pluripotent Stem Cell Lines Exhibit Pervasive Mosaic Aneuploidy

    Get PDF
    Human pluripotent stem cell (hPSC) lines have been considered to be homogeneously euploid. Here we report that normal hPSC – including induced pluripotent - lines are karyotypic mosaics of euploid cells intermixed with many cells showing non-clonal aneuploidies as identified by chromosome counting, spectral karyotyping (SKY) and fluorescent in situ hybridization (FISH) of interphase/non-mitotic cells. This mosaic aneuploidy resembles that observed in progenitor cells of the developing brain and preimplantation embryos, suggesting that it is a normal, rather than pathological, feature of stem cell lines. The karyotypic heterogeneity generated by mosaic aneuploidy may contribute to the reported functional and phenotypic heterogeneity of hPSCs lines, as well as their therapeutic efficacy and safety following transplantation

    The cyanobacterial saxitoxin exacerbates neural cell death and brain malformations induced by zika virus

    Get PDF
    The northeast (NE) region of Brazil commonly goes through drought periods, which favor cyanobacterial blooms, capable of producing neurotoxins with implications for human and animal health. The most severe dry spell in the history of Brazil occurred between 2012 and 2016. Coincidently, the highest incidence of microcephaly associated with the Zika virus (ZIKV) outbreak took place in the NE region of Brazil during the same years. In this work, we tested the hypothesis that saxitoxin (STX), a neurotoxin produced in South America by the freshwater cyanobacteria Raphidiopsis raciborskii, could have contributed to the most severe Congenital Zika Syndrome (CZS) profile described worldwide. Quality surveillance showed higher cyanobacteria amounts and STX occurrence in human drinking water sup-plies of NE compared to other regions of Brazil. Experimentally, we described that STX dou-bled the quantity of ZIKV-induced neural cell death in progenitor areas of human brain organoids, while the chronic ingestion of water contaminated with STX before and during gestation caused brain abnormalities in offspring of ZIKV-infected immunocompetent C57BL/6J mice. Our data indicate that saxitoxin-producing cyanobacteria is overspread in water reservoirs of the NE and might have acted as a co-insult to ZIKV infection in Brazil. These results raise a public health concern regarding the consequences of arbovirus outbreaks happening in areas with droughts and/or frequent freshwater cyanobacterial blooms.Fil: Pedrosa, Carolina da S. G.. D’Or Institute for Research and Education; BrasilFil: Souza, Leticia R. Q.. D’Or Institute for Research and Education; BrasilFil: Gomes, Tiago A.. Universidade Federal do Rio de Janeiro; Brasil. Instituto Oswaldo Cruz; BrasilFil: de Lima, Caroline V. F.. D’Or Institute for Research and Education; BrasilFil: Ledur, Pitia F.. D’Or Institute for Research and Education; BrasilFil: Karmirian, Karina. D’Or Institute for Research and Education; Brasil. Universidade Federal do Rio de Janeiro; BrasilFil: Barbeito Andrés, Jimena. Universidade Federal do Rio de Janeiro; Brasil. Universidad Nacional Arturo Jauretche. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos. Provincia de Buenos Aires. Ministerio de Salud. Hospital Alta Complejidad en Red El Cruce Dr. Néstor Carlos Kirchner Samic. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos; ArgentinaFil: Costa, Marcelo do N.. Universidade Federal do Rio de Janeiro; BrasilFil: Higa, Luiza M.. Universidade Federal do Rio de Janeiro; BrasilFil: Rossi, Átila D.. Universidade Federal do Rio de Janeiro; BrasilFil: Bellio, Maria. Universidade Federal do Rio de Janeiro; BrasilFil: Tanuri, Amilcar. Universidade Federal do Rio de Janeiro; BrasilFil: Prata Barbosa, Arnaldo. D’Or Institute for Research and Education; BrasilFil: Tovar Moll, Fernanda. D’Or Institute for Research and Education; Brasil. Universidade Federal do Rio de Janeiro; BrasilFil: Garcez, Patricia P.. Universidade Federal do Rio de Janeiro; BrasilFil: Lara, Flavio A.. Instituto Oswaldo Cruz; BrasilFil: Molica, Renato J. R.. Universidad Federal Rural Pernambuco; BrasilFil: Rehen, Stevens K.. D’Or Institute for Research and Education; Brasil. Universidade Federal do Rio de Janeiro; Brasi

    Synchrotron Radiation X-Ray Microfluorescence Reveals Polarized Distribution of Atomic Elements during Differentiation of Pluripotent Stem Cells

    Get PDF
    The mechanisms underlying pluripotency and differentiation in embryonic and reprogrammed stem cells are unclear. In this work, we characterized the pluripotent state towards neural differentiated state through analysis of trace elements distribution using the Synchrotron Radiation X-ray Fluorescence Spectroscopy. Naive and neural-stimulated embryoid bodies (EB) derived from embryonic and induced pluripotent stem (ES and iPS) cells were irradiated with a spatial resolution of 20 µm to make elemental maps and qualitative chemical analyses. Results show that these embryo-like aggregates exhibit self-organization at the atomic level. Metallic elements content rises and consistent elemental polarization pattern of P and S in both mouse and human pluripotent stem cells were observed, indicating that neural differentiation and elemental polarization are strongly correlated

    Nootropic effects of LSD: Behavioral, molecular and computational evidence

    Get PDF
    The therapeutic use of classical psychedelic substances such as d-lysergic acid diethylamide (LSD) surged in recent years. Studies in rodents suggest that these effects are produced by increased neural plasticity, including stimulation of the mTOR pathway, a key regulator of metabolism, plasticity, and aging. Could psychedelic-induced neural plasticity be harnessed to enhance cognition? Here we show that LSD treatment enhanced performance in a novel object recognition task in rats, and in a visuo-spatial memory task in humans. A proteomic analysis of human brain organoids showed that LSD affected metabolic pathways associated with neural plasticity, including mTOR. To gain insight into the relation of neural plasticity, aging and LSD-induced cognitive gains, we emulated the experiments in rats and humans with a neural network model of a cortico-hippocampal circuit. Using the baseline strength of plasticity as a proxy for age and assuming an increase in plasticity strength related to LSD dose, the simulations provided a good fit for the experimental data. Altogether, the results suggest that LSD has nootropic effects.This project was supported by the Beckley Foundation; Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) – Finance Code 001, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (grants 308775/2015-5 and 408145/2016-1), São Paulo Research Foundation grants (2013/07699-0, 2014/10068-4, 2017/25588-1 and 2019/00098-7), intramural grants from D'Or Institute and Federal University of Rio Grande do Norte, and a Juan de la Cierva-Incorporación Scholarship (IJCI-2016-27864) from the Spanish Ministry of Science, Innovation and Universities, and a Newton International Fellowship from the Royal Society.Peer reviewe

    Co-expression network of neural-differentiation genes shows specific pattern in schizophrenia

    Get PDF
    Background: Schizophrenia is a neurodevelopmental disorder with genetic and environmental factors contributing to its pathogenesis, although the mechanism is unknown due to the difficulties in accessing diseased tissue during human neurodevelopment. The aim of this study was to find neuronal differentiation genes disrupted in schizophrenia and to evaluate those genes in post-mortem brain tissues from schizophrenia cases and controls. Methods: We analyzed differentially expressed genes (DEG), copy number variation (CNV) and differential methylation in human induced pluripotent stem cells (hiPSC) derived from fibroblasts from one control and one schizophrenia patient and further differentiated into neuron (NPC). Expression of the DEG were analyzed with microarrays of post-mortem brain tissue (frontal cortex) cohort of 29 schizophrenia cases and 30 controls. A Weighted Gene Co-expression Network Analysis (WGCNA) using the DEG was used to detect clusters of co-expressed genes that werenon-conserved between adult cases and controls brain samples. Results: We identified methylation alterations potentially involved with neuronal differentiation in schizophrenia, which displayed an over-representation of genes related to chromatin remodeling complex (adjP = 0.04). We found 228 DEG associated with neuronal differentiation. These genes were involved with metabolic processes, signal transduction, nervous system development, regulation of neurogenesis and neuronal differentiation. Between adult brain samples from cases and controls there were 233 DEG, with only four genes overlapping with the 228 DEG, probably because we compared single cell to tissue bulks and more importantly, the cells were at different stages of development. The comparison of the co-expressed network of the 228 genes in adult brain samples between cases and controls revealed a less conserved module enriched for genes associated with oxidative stress and negative regulation of cell differentiation. Conclusion: This study supports the relevance of using cellular approaches to dissect molecular aspects of neurogenesis with impact in the schizophrenic brain. We showed that, although generated by different approaches, both sets of DEG associated to schizophrenia were involved with neocortical development. The results add to the hypothesis that critical metabolic changes may be occurring during early neurodevelopment influencing faulty development of the brain and potentially contributing to further vulnerability to the illness.We thank the patients, doctors and nurses involved with sample collection and the Stanley Medical Research Institute. This research was supported by either Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq #17/2008) and Fundação Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ). MM (CNPq 304429/2014-7), ACT (FAPESP 2014/00041-1), LL (CAPES 10682/13-9) HV (CAPES) and BP (PPSUS 137270) were supported by their fellowshipsinfo:eu-repo/semantics/publishedVersio

    <i>In vitro</i> antiviral activity of the anti-HCV drugs daclatasvir and sofosbuvir against SARS-CoV-2, the aetiological agent of COVID-19

    Get PDF
    BackgroundCurrent approaches of drug repurposing against COVID-19 have not proven overwhelmingly successful and the SARS-CoV-2 pandemic continues to cause major global mortality. SARS-CoV-2 nsp12, its RNA polymerase, shares homology in the nucleotide uptake channel with the HCV orthologue enzyme NS5B. Besides, HCV enzyme NS5A has pleiotropic activities, such as RNA binding, that are shared with various SARS-CoV-2 proteins. Thus, anti-HCV NS5B and NS5A inhibitors, like sofosbuvir and daclatasvir, respectively, could be endowed with anti-SARS-CoV-2 activity.MethodsSARS-CoV-2-infected Vero cells, HuH-7 cells, Calu-3 cells, neural stem cells and monocytes were used to investigate the effects of daclatasvir and sofosbuvir. In silico and cell-free based assays were performed with SARS-CoV-2 RNA and nsp12 to better comprehend the mechanism of inhibition of the investigated compounds. A physiologically based pharmacokinetic model was generated to estimate daclatasvir's dose and schedule to maximize the probability of success for COVID-19.ResultsDaclatasvir inhibited SARS-CoV-2 replication in Vero, HuH-7 and Calu-3 cells, with potencies of 0.8, 0.6 and 1.1 μM, respectively. Although less potent than daclatasvir, sofosbuvir alone and combined with daclatasvir inhibited replication in Calu-3 cells. Sofosbuvir and daclatasvir prevented virus-induced neuronal apoptosis and release of cytokine storm-related inflammatory mediators, respectively. Sofosbuvir inhibited RNA synthesis by chain termination and daclatasvir targeted the folding of secondary RNA structures in the SARS-CoV-2 genome. Concentrations required for partial daclatasvir in vitro activity are achieved in plasma at Cmax after administration of the approved dose to humans.ConclusionsDaclatasvir, alone or in combination with sofosbuvir, at higher doses than used against HCV, may be further fostered as an anti-COVID-19 therapy

    Accelerating Neuronal Aging in In Vitro Model Brain Disorders: a Focus on Reactive Oxygen Species

    No full text
    In this review, we discuss insights gained through the use of stem cell preparations regarding the modeling of neurological diseases, the need for aging neurons derived from pluripotent stem cells to further advance the study of late-onset adult neurological diseases, and the extent to which mechanisms linked to the mismanagement of ROS. The context of these issues can be revealed using the three disease states of Parkinson’s (PD), Alzheimer’s (AD), and schizophrenia, as considerable insights have been gained into these conditions through the use of stem cells in terms of disease etiologies and the role of oxidative stress. The latter subject is a primary area of interest of our group. After discussing the molecular models of accelerated aging, we highlight the role of ROS for the three diseases explored here. Importantly, we do not seek to provide an extensive account of all genetic mutations for each of the three disorders discussed in this review, but we aim instead to provide a conceptual framework that could maximize the gains from merging the approaches of stem cell microsystems and the study of oxidative stress in disease in order to optimize therapeutics and determine new molecular targets against oxidative stress that spare stem cell proliferation and development
    corecore