44 research outputs found

    The proposal of a GSSP for the Berriasian Stage (Cretaceous System): Part 1.

    Get PDF
    Here in the first part of this publication we discuss the possibilities for the selection of a GSSP for the Berriasian Stage of the Cretaceous System, based on the established methods for correlation in the Tithonian/Berriasian interval. This will be followed, in the second part, by an account of the stratigraphic evidence that justifies the locality of Tré Maroua (Hautes-Alpes, SE France) as the proposed GSSP. Here we discuss the possibilities for correlation in the historical J/K boundary interval, and the evolution of thinking on the positioning of the boundary over recent generations, and in relation to research in the last ten years. The Tithonian/Berriasian boundary level is accepted as occurring within magnetosubzone M19n.2n. The detailed distribution of calpionellids has been recorded at numerous sites, tied to magnetostratigraphy, and the base of the calpionellid Alpina Zone is taken to define the base of the Berriasian Stage. This is at a level just below the distinctive reversed magnetic subzone M19n.1r (the so-called Brodno reversal). We discuss a wide range of magnetostratigraphic and biostratigraphic data from key localities globally, in the type Berriasian areas of France and wider regions (Le Chouet, Saint Bertrand, Puerto Escaño, Rio Argos, Bosso, Brodno, Kurovice, Theodosia etc.). The characteristic datums that typify the J/K boundary interval in Tethys and its extensions are detailed, and the correlative viability of various fossil groups is discussed. The boundary level is correlated to well-known J/K sections globally, and a series of secondary markers and proxies are indicated which assist wider correlation. Particularly significant are the primary basal Berriasian marker, the base of the Alpina Subzone (marked by dominance of small Calpionella alpina, Crassicollaria parvula and Tintinopsella carpathica) and secondary markers bracketing the base of the Calpionella Zone, notably the FOs of the calcareous nannofossil species Nannoconus wintereri (just below the boundary) and the FO of Nannoconus steinmannii minor (just above). Notable proxies for the boundary are: 1) the base of the Arctoteuthis tehamaensis Zone in boreal and subboreal regions, 2) the dated base of the Alpina Subzone at 140.22 ± 0.14 Ma, which also gives a precise age estimate for the system boundary; and 3) the base of radiolarian “unitary zone” 14, which is situated just above the base of the Alpina Subzone

    The proposal of a GSSP for the Berriasian Stage (Cretaceous System): Part 2

    Get PDF
    In part 1 of this work we discussed the possibilities for the selection of a GSSP for the Berriasian Stage of the Cretaceous System, based on prevailing practical methods for correlation in that J/K interval, traditional usage and the consensus over the best boundary markers that had developed in the last forty years. This consensus has developed further, based on the results of multidisciplinary studies on numerous sites over the last decade. Here in Part 2 we give an account of the application of those results by the Berriasian Working Group (ISCS), and present the stratigraphic evidence that justifies the selection of the locality of Tré Maroua (Hautes-Alpes, SE France) as the proposed GSSP. We describe a 45 m-thick section in the Calcaires Blancs vocontiens – that part of the formation covering the calpionellid Chitinoidella, Remanei. Intermedia, Colomi, Alpina, Ferasini, Elliptica and Simplex biozones. The stratigraphic data collected here has been compiled as part of a wider comparative study of complementary Vocontian Basin sites (with localities at Charens, St Bertrand, Belvedere and Le Chouet). Evidence from Tré Maroua thus sits in this substantial regional biostratigraphic and magnetostratigraphic context. For the purposes of the GSSP definition, here we particularly concentrate on the unbroken sequence and biotic markers in the interval immediately below the boundary, the Colomi Subzone (covering circa 675,000 years), and immediately above, the Alpina Subzone (covering circa 725,000 years). Particularly significant fossil datums identified in the Tré Maroua profile are the primary basal Berriasian marker, the base of the Alpina Subzone (a widespread event marked by dominance of small Calpionella alpina, with rare Crassicollaria parvula and Tintinopsella carpathica): the base of the Berriasian Stage is placed at the base of bed 14, which coincides with the base of the Alpina Subzone. Secondary markers bracketing the base of the Calpionella Zone are the FOs of the calcareous nannofossil species Nannoconus wintereri, close below the boundary, and the FO of Nannoconus steinmannii minor, close above. The Tithonian/Berriasian boundary level occurs within M19n.2n, in common with many documented sites, and is just below the distinctive reversed magnetic subzone M19n.1r (the so-called Brodno reversal). We present data which is congruent with magnetostratigraphic and biostratigraphic data from other key localities in France and in wider regions (Le Chouet, Saint Bertrand, Puerto Escaño, Rio Argos, Bosso, Brodno, Kurovice, Theodosia…), and thus the characteristics and datums identified at Tré Maroua are key for correlation and, in general, they typify the J/K boundary interval in Tethys and connected seas

    Stratigraphy and microfacies of the Jurassic and lowermost Cretaceous of the Veliky Kamenets section (Pieniny Klippen Belt, Carpathians, Western Ukraine)

    No full text
    The Veliky Kamenets section in the eastern part of the Pieniny Klippen Belt in the Ukrainian Carpathians shows a well exposed, 83 m thick succession composed of Jurassic and lowermost Cretaceous (Berriasian) deposits. The terrigenous part of the section includes: gravels with a sandy matrix (unit 1A), massive grey-green sandstones (unit 1B) and shales with intercalations of siltstones/sandstones and oyster/gastropod lumachelles (unit 2). Organic-walled dinoflagellates document the Toarcian-Aalenian age of the siliciclastic deposits of unit 2. The carbonate part of the succession embraces: stromatactis mud-mounds interfingering with crinoidal limestones (unit 3A), lower nodular limestones (unit 3B), cherty limestones (unit 3C), upper nodular limestones (unit 3D), pink pelitic limestones (unit 3E), limestones with a volcanogenic bed (unit 5) and limestone breccia limestones (unit 6). This succession has yielded abundant ammonites from the Bathonian, Oxfordian and Kimmeridgian (with a stratigraphical hiatus covering the Callovian and Lower Oxfordian), as well as calcareous dinoflagellates (from the Upper Oxfordian towards the top of the succession), and calpionellids (in the Tithonian and Berriasian). Detailed stratigraphical study of the succession based both on ammonites and microfossils has resulted in the recognition of biostratigraphical units and their correlation with the chronostratigraphical scale.The microfacies recognized in the pelagic part of the succession include: the “filament” (Bositra) microfacies (Bathonian), the planktonic foraminifer microfacies (Oxfordian), the Saccocoma microfacies (Kimmeridgian to Upper Tithonian), and the calpionellid microfacies (Upper Tithonian–Berriasian). The volcanogenic rocks (lava flows and volcanic ash) appear in the topmost part of the succession (units 4 to 6) and this volcanic event is very precisely located in the Elliptica-Simplex chrons of the Middle and Late Berriasian

    Monoclonal antibodies putatively recognising activation and differentiation antigens

    No full text
    In the activation/maturation section, 46 monoclonal antibodies (mAbs) were analysed using freshly isolated as well as mitogen activated and recall antigen re-stimulated cells. A total of 10 internal standards as well as 6 antibodies with established reactivity for human cells, reported to cross-react with porcine leukocytes, were included in the panel. The standard antibodies were anti-CD25, CD44, CD45, SLA II, SWC1, SWC2, SWC7 and SWC8 reagents. The test panel contained antibodies with putative reactivity to CD25, SLA II and other mAbs directed against ill-defined targets. Single and double colour surface staining was performed in the attempt to group the mAbs tested into clusters of differentiation. Five new anti-class II reagents, two directed to SLA-DQ and three to SLA-DR, could be added to the previously established ones. One new anti-CD25 as well as two new antibodies with SWC7 and SWC8 specifities, respectively, could also be added to the previously established ones. The identity of the two latter antibodies was also confirmed in other sections of this workshop (B-cell section for SWC7 antibodies and myeloid section for the SWC8 antibodies). The antibody JM2F12, in our hands, has shown strong similarities to the cross-reactive anti human-CD49f reagent. No other clusters were identified, as all remaining antibodies behaved in a different way on different target leukocyte populations. The second purpose of the section was fulfilled interesting staining profiles of several antibodies on differentiating lymphocytes were recorded and are discussed here. Copyright © 2001 Elsevier Science B.V

    Comments on the geology of the Crimean Peninsula and a reply to a recent publication on the Theodosia area by Arkadiev et al. (2019): "The calcareous nannofossils and magnetostratigraphic results from the Upper Tithonian-Berriasian of Feodosiya region (Eastern Crimea)"

    No full text
    International audienceHere we assess the evidence for the placing of magnetic and fossil biozonal boundaries in Upper Tithonian to Lower Berriasian (Jurassic–Cretaceous boundary) sedimentary rocks on the Black Sea coast south of Theodosia (Ukraine): that is, in magnetozones M19n to M17r. We consider our earlier-published results from these sections in relation to the correlative pattern that has become well established further west in Tethys. Additionally, this is compared and contrasted with other, alternative, results from Crimea that have been published in recent times

    ¿Cómo evaluar e intervenir sobre la disfemia? Un análisis de percepciones de especialistas en logopedia

    No full text
    La tartamudez se define como un trastorno de la fluidez del habla que afecta a la comunicación. Este trastorno, resulta complejo y puede suponer un importante desafío para muchos logopedas y otros profesionales. Hasta el momento, no abundan las investigaciones focalizadas acerca de cómo evaluar e intervenir en la tartamudez desde la perspectiva de los profesionales en logopedia. Precisamente por ello, el objetivo del presente estudio es conocer cuáles son los principales métodos de evaluación e intervención para la tartamudez que utilizan los logopedas en el contexto español y la satisfacción que tienen con éstos. Para ello, se administró una encuesta en la que participaron un total de 123 logopedas y, posteriormente, se efectuó un análisis cuantitativo de los datos obtenidos. Los resultados permitieron conocer los diferentes métodos de evaluación e intervención más ampliamente utilizados en el tratamiento de la tartamudez, aunque se han observado ciertas dificultades para alcanzar un consenso en la utilización de los mismos. Además, los logopedas reclaman la necesidad de confeccionar nuevos instrumentos de evaluación y de una mayor colaboración por parte de los centros escolares. Por tanto, resultaría primordial adoptar un enfoque holístico tratando de enseñar a los sujetos con tartamudez estrategias para afrontar la fluidez y, a la vez, aprender a convivir y manejar el trastorno
    corecore